Основные типы сред передачи данных. Выбор типа среды передачи данных Производительность среды передачи данных термин

Типичными и наиболее распространенными представителями искусственной среды передачи данных являются кабели. При создании сети передачи данных выбор осуществляется из следующих основных видов кабелей: волоконно-оптический (fiber), коаксиал (coaxial) и витая пара (twisted pair). При этом и коаксиал (коаксиальный кабель), и витая пара для передачи сигналов используют металлический проводник, а волоконно-оптический кабель - световод, сделанный из стекла или пластмассы.

Совместно используемый несколькими интерфейсами физический канал называют разделяемым. Часто используют термин разделяемая среда передачи данных.

Вопрос 22.

Классификация методов доступа к разделяемой среде передачи данных.

1. Случайные методы доступа (Ethernet)

2. Детерминированные (Token bus, Token ring)

Случайные: доступ к среде осуществляется в любой момент времени не ависимо от других абонентов сети.

Детерм.: доступ к среде осуществляется только в строго определенные моменты времени при наличии разрешения.

Основным недостатком случайных методов доступа – наличие коллизий.

Основным плюсом детерминированного метода является независимость времени передачи от загрузки.

Вопрос 23.

Случайный метод доступа CSMA/CD. Алгоритм работы Эффективность.

В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).

Этот метод применяется исключительно в сетях с логической общей шиной (к которым относятся и радиосети, породившие этот метод). Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Одновременно все компьютеры сети имеют возможность немедленно (с учетом задержки распространения сигнала по физической среде) получить данные, которые любой из компьютеров начал передавать на общую шину (рис. 3.3). Простота схемы подключения - это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа (Multiply Access, MA).



Рис. 3.3. Метод случайного доступа CSMA/CD

Этапы доступа к среде

Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения.

Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense, CS). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.

Если среда свободна, то узел имеет право начать передачу кадра. Этот кадр изображен на рис. 3.3 первым. Узел 1 обнаружил, что среда свободна, и начал передавать свой кадр. В классической сети Ethernet на коаксиальном кабеле сигналы передатчика узла 1 распространяются в обе стороны, так что все узлы сети их получают. Кадр данных всегда сопровождается преамбулой (preamble), которая состоит из 7 байт, состоящих из значений 10101010, и 8-го байта, равного 10101011. Преамбула нужна для вхождения приемника в побитовый и побайтовый синхронизм с передатчиком.

Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ.

Узел 2 во время передачи кадра узлом 1 также пытался начать передачу своего кадра, однако обнаружил, что среда занята - на ней присутствует несущая частота, - поэтому узел 2 вынужден ждать, пока узел 1 не прекратит передачу кадра.

После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна. Из-за задержек распространения сигнала по кабелю не все узлы строго одновременно фиксируют факт окончания передачи кадра узлом 1.

В приведенном примере узел 2 дождался окончания передачи кадра узлом 1, сделал паузу в 9,6 мкс и начал передачу своего кадра.

Возникновение коллизии

При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации - методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.

ПРИМЕЧАНИЕ Заметим, что этот факт отражен в составляющей «Base(band)», присутствующей в названиях всех физических протоколов технологии Ethernet (например, 10Base-2,10Base-T и т. п.). Baseband network означает сеть с немодулированной передачей, в которой сообщения пересылаются в цифровой форме по единственному каналу, без частотного разделения.

Коллизия - это нормальная ситуация в работе сетей Ethernet. В примере, изображенном на рис. 3.4, коллизию породила одновременная передача данных узлами 3 и У. Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра. То есть коллизии - это следствие распределенного характера сети.

Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD). Для увеличения вероятности скорейшего обнаружения коллизии всеми станциями сети станция, которая обнаружила коллизию, прерывает передачу своего кадра (в произвольном месте, возможно, и не на границе байта) и усиливает ситуацию коллизии посылкой в сеть специальной последовательности из 32 бит, называемой jam-последовательностью.

Рис. 3.4. Схема возникновения и распространения коллизии

После этого обнаружившая коллизию передающая станция обязана прекратить передачу и сделать паузу в течение короткого случайного интервала времени. Затем она может снова предпринять попытку захвата среды и передачи кадра. Случайная пауза выбирается по следующему алгоритму:

Пауза = L *(интервал отсрочки),

где интервал отсрочки равен 512 битовым интервалам (в технологии Ethernet принято все интервалы измерять в битовых интервалах; битовый интервал обозначается как bt и соответствует времени между появлением двух последовательных бит данных на кабеле; для скорости 10 Мбит/с величина битового интервала равна 0,1 мкс или 100 нс);

L представляет собой целое число, выбранное с равной вероятностью из диапазона , где N - номер повторной попытки передачи данного кадра: 1,2,..., 10.

После 10-й попытки интервал, из которого выбирается пауза, не увеличивается. Таким образом, случайная пауза может принимать значения от 0 до 52,4 мс.

Если 16 последовательных попыток передачи кадра вызывают коллизию, то передатчик должен прекратить попытки и отбросить этот кадр.

Из описания метода доступа видно, что он носит вероятностный характер, и вероятность успешного получения в свое распоряжение общей среды зависит от загруженности сети, то есть от интенсивности возникновения в станциях потребности в передаче кадров. При разработке этого метода в конце 70-х годов предполагалось, что скорость передачи данных в 10 Мбит/с очень высока по сравнению с потребностями компьютеров во взаимном обмене данными, поэтому загрузка сети будет всегда небольшой. Это предположение остается иногда справедливым и по сей день, однако уже появились приложения, работающие в реальном масштабе времени с мультимедийной информацией, которые очень загружают сегменты Ethernet. При этом коллизии возникают гораздо чаще. При значительной интенсивности коллизий полезная пропускная способность сети Ethernet резко падает, так как сеть почти постоянно занята повторными попытками передачи кадров. Для уменьшения интенсивности возникновения коллизий нужно либо уменьшить трафик, сократив, например, количество узлов в сегменте или заменив приложения, либо повысить скорость протокола, например перейти на Fast Ethernet.

Следует отметить, что метод доступа CSMA/CD вообще не гарантирует станции, что она когда-либо сможет получить доступ к среде. Конечно, при небольшой загрузке сети вероятность такого события невелика, но при коэффициенте использования сети, приближающемся к 1, такое событие становится очень вероятным. Этот недостаток метода случайного доступа - плата за его чрезвычайную простоту, которая сделала технологию Ethernet самой недорогой. Другие методы доступа - маркерный доступ сетей Token Ring и FDDI, метод Demand Priority сетей 100VG-AnyLAN - свободны от этого недостатка.

Страница 27 из 27 Физические основы передачи данных (Линии связи,)

Физические основы передачи данных

Любая сетевая технология должна обеспечить надежную и быструю передачу дискретных данных по линиям связи. И хотя между технологиями имеются большие различия, они базируются на общих принципах передачи дискретных данных. Эти принципы находят свое воплощение в методах представления двоичных единиц и нулей с помощью импульсных или синусоидальных сигналов в линиях связи различной физической природы, методах обнаружения и коррекции ошибок, методах компрессии и методах коммутации.

Линии связи

Первичные сети, линии и каналы связи

При описании технической системы, которая передает информацию между узлами сети, в литературе можно встретить несколько названий: линия связи, составной канал, канал, звено. Часто эти термины используются как синонимы, и во многих случаях это не вызывает проблем. В то же время есть и специфика в их употреблении.

    Звено (link) - это сегмент, обеспечивающий передачу данных между двумя соседними узлами сети. То есть звено не содержит промежуточных устройств коммутации и мультиплексирования.

    Каналом (channel) чаще всего обозначают часть пропускной способности звена, используемую независимо при коммутации. Например, звено первичной сети может состоять из 30 каналов, каждый из которых обладает пропускной способностью 64 Кбит/с.

    Составной канал (circuit) - это путь между двумя конечными узлами сети. Составной канал образуется отдельными каналами промежуточных звеньев и внутренними соединениями в коммутаторах. Часто эпитет «составной» опускается и термин «канал» используется для обозначения как составного канала, так и канала между соседними узлами, то есть в пределах звена.

    Линия связи может использоваться как синоним для любого из трех остальных терминов.

На рис. показаны два варианта линии связи. В первом случае (а) линия состоит из сегмента кабеля длиной несколько десятков метров и представляет собой звено. Во втором случае (б) линия связи представляет собой составной канал, развернутый в сети с коммутацией каналов. Такой сетью может быть первичная сеть или телефонная сеть.

Однако для компьютерной сети эта линия представляет собой звено, так как соединяет два соседних узла, и вся коммутационная промежуточная аппаратура является прозрачной для этих узлов. Повод для взаимного непонимания на уровне терминов компьютерных специалистов и специалистов первичных сетей здесь очевиден.

Первичные сети специально создаются для того, чтобы предоставлять услуги каналов передачи данных для компьютерных и телефонных сетей, про которые в таких случаях говорят, что они работают «поверх» первичных сетей и являются наложенными сетями.

Классификация линий связи

Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. Физическая среда передачи данных (физические носители информации) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.

В первом случае говорят о проводной среде, а во втором - о беспроводной.

В современных телекоммуникационных системах информация передается с помощью электрического тока или напряжения, радиосигналов или световых сигналов - все эти физические процессы представляют собой колебания электромагнитного поля различной частоты.

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. Еще в недалеком прошлом такие линии связи были основными для передачи телефонных или телеграфных сигналов. Сегодня проводные линии связи быстро вытесняются кабельными. Но кое-где они все еще сохранились и при отсутствии других возможностей продолжают использоваться и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего.

Кабельные линии имеют достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической и, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных (и телекоммуникационных) сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов - неэкранированная витая пара (Unshielded Twisted Pair, UTP) и экранированная витая пара (Shielded Twisted Pair, STP), коаксиальные кабели с медной жилой, волоконно-оптические кабели. Первые два типа кабелей называют также медными кабелями.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое разнообразие типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны широковещательного радио (длинных, средних и коротких волн), называемые также АМ-диапазонами, или диапазонами амплитудной модуляции (Amplitude Modulation, AM), обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, использующие диапазоны очень высоких частот (Very High Frequency, VHF), для которых применяется частотная модуляция (Frequency Modulation, FM). Для передачи данных также используются диапазоны ультравысоких частот (Ultra High Frequency, UHF), называемые еще диапазонами микроволн (свыше 300 МГц). При частоте свыше 30 МГц сигналы уже не отражаются ионосферой Земли, и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, либо локальные или мобильные сети, где это условие выполняется.

Классификация сетей по типу среды для передачи данных

По типу среды для передачи данных сети делятся на проводные (медный коаксиальный кабель, витая пара, оптическое волокно и т.д.) и беспроводные (радиоканалы, передача данных в инфракрасном диапазоне и т.д.).

Классификация сетей по скорости передачи информации

По скорости передачи информации сети можно разделить на низко- (до 10 Мбит/с), средне- (до 100 Мбит/с) и высокоскоростные (свыше 100 Мбит/с).

Классификация сетей по способу передачи

По способу передачи данных можно выделить:

    сети коммутации каналов;

    сети коммутации пакетов.

В сетях коммутации каналов предполагается, что между источником и приемником существует выделенный маршрут, типичным примером является телефонная сеть. Является неэффективной, так как канал резервируется на все время соединения, достоинством этой технологии служит ее прозрачность, так как канал устанавливается на все время соединения.

В сетях коммутации пакетов длинные сообщения разбиваются на короткие пакеты. Каждый пакет перемещается от отправителя к получателю через промежуточные узлы сети. Основным преимуществом является гибкость, совместное использование одних каналов связи, возможность менять приоритет передаваемой информации, недостатком - невозможность гарантировать своевременную доставку пакетов.

Классификация сетей по роли компьютеров в них

По роли компьютеров в сетях можно выделить следующие типы сетей:

    peer-to-peer network (p2p) - одноранговая сеть;

    client\server network (server-based network) - сеть с выделенным сервером;

    смешанные сети.

Сервер - специально выделенный высокопроизводительный компьютер, управляющий работой сети и/или предоставляющий другим компьютерам сети свои ресурсы (программное обеспечение, сервисы, файлы, устройства), отвечающий на запросы клиентов.

Клиентский компьютер (клиент, рабочая станция) - компьютер рядового пользователя сети, получающий доступ к ресурсам сервера (серверов).

Администратор сети - человек, обладающий полномочиями для управления компьютерами, пользователями и ресурсами в сети.

Администрирование сети - управление сетью: настройка сетевого оборудования, обеспечение доступа к данным, безопасность, работа с пользователями.

Одноранговые сети

В одноранговой сети все компьютеры равноправны. Каждый из них может выступать как в роли сервера, так и клиента, каждый пользователь является администратором своего компьютера, как следствие в таких сетях хаос часто становится нормой.

Преимущества:

    легкость в установке и настройке;

    независимость отдельных компьютеров и их ресурсов друг от друга;

    недороги при развертывании и поддержке;

    не нужен администратор.

Недостатки:

    пользователи должны помнить столько паролей, сколько сетевых ресурсов;

    резервное копирование для каждого компьютера;

    затруднен поиск информации;

    низкая защищенность.

Число компьютеров в одноранговых сетях обычно не превышает 10. Примерами могут служить домашние сети и сети небольших офисов.

Сеть с выделенным сервером

Сети с выделенным сервером, как правило, создаются в крупных организациях.

Преимущества:

    централизованное управление учетными записями пользователей, безопасностью и доступом;

    пользователю нужен лишь один пароль.

Недостатки:

    неисправность сервера может сделать всю сеть неработоспособной;

    наличие квалифицированного персонала для обслуживания сети;

    высокая стоимость.

Физическое устройство сетей

Физическое устройство сети определяется в первую очередь средой, которая будет использована для передачи данных. От среды зависит, какое сетевое оборудование будет выбрано для ее создания, и то какую топологию будет иметь полученная сеть.

27. Сетевое оборудование.

Оборудование (оконечное оборудование)

Для создания сетевой среды с использованием кабелей, обычно требуются специальные коннекторы , закрепляемые на их концах. Затем кабель одним концом вставляется в сетевой адаптер (сетевую плату), устанавливаемую в компьютер и позволяющую подключить его к сети, а другим - в какое-либо устройство связи (концентратор, мост, коммутатор, маршрутизатор, шлюз и т.д.) Если же используется беспроводной сетевой адаптер, то взаимодействие с сетью происходит за счет передачи сигнала между адаптером и точкой доступа , соединенной с локальной сетью.

Сетевые адаптеры (сетевые карты) требуются для подключения к сетевой среде. Современные компьютеры обычно оснащены адаптерами Ethernet и Wi-Fi. Сетевой адаптер должен иметь нужный разъем для подключения коннектора и уникальный физический адрес (MAC-адрес), используемый для однозначной идентификации компьютера в данном сегменте сети. Для определения MAC-адреса можно использовать, например, команду:

Найти информацию о «Физическом адресе» можно и в свойствах сетевого адаптера.

Повторители и усилители (на физическом уровне) выполняют усиление передаваемого сигнала.

Концентраторы (hub) организуют рабочую группу, представляет собой активный центральный элемент звезды. Работают на физическом уровне. Их основная задача - принять, усилить и ретранслировать сигнал, полученный от одного компьютера, во все остальные активные порты. Обработка сигнала не производится.

Мосты и коммутаторы (bridge и switch) соединяют два или несколько сегментов сети, разделяя трафик в них, служат для соединения однотипных сетей (использующие одинаковые протоколы). Помогают снизить количество коллизий в сети, так как поддерживают таблицу соответствия своих портов и MAC-адресов компьютеров. Эти устройства работают не только на физическом, но и сетевом уровне модели OSI. Различие между мостами и коммутаторами заключается в том, что мост в каждый момент времени может передавать только один кадр, а коммутатор работает сразу с несколькими портами параллельно. Большинство современных сетей строится на коммутаторах.

Маршрутизаторы (router) работают на сетевом уровне. Применяется в сетях со сложной конфигурацией, использующие разные способы передачи данных, для эффективной работы с трафиком. В их задачу входит анализ адресов, определение наилучшего маршрута доставки пакета данных. Конечно, маршрутизаторы работают и на более низких уровнях модели OSI - восстанавливают уровень и форму передаваемого сигнала, как мосты и коммутаторы - позволяют избежать столкновений. При этом маршрутизаторы изменяют передаваемые кадры, фильтруют сетевой трафик, ведут статистику о передаваемых данных, проводят авторизацию пользователя, позволяют строить виртуальные локальные сети и т.д. Шлюзы - устройства, позволяющие объединять разнородные системы, использующие разные сетевые архитектуры, работающие с разными протоколами.

Модемы (модулятор-демодулятор) осуществляют соединение передающего устройства с каналами связи, работает на канальном уровне, например, позволяет осуществлять передачу данных компьютерами по телефонным проводам.

28. Доступ к среде передачи.

С сетевой топологией тесно связано понятие способа доступа к среде передачи , определяющего как компьютеры должны отправлять и принимать данные по сети. Примером могут служить:

    множественный доступ с контролем несущей и обнаружением столкновений; Если кабель свободен, любой компьютер может начать передачу данных, остальные ждут окончания передачи. При возникновении коллизии передача приостанавливается на случайное время, после чего проводится еще одна попытка передачи данных. Этот метод используется в сетях Ethernet.

    множественный доступ с контролем несущей и предотвращением столкновений ; Этот метод отличается от предыдущего тем, что перед передачей данных компьютер посылает в сеть специальный пакет, сообщая остальным компьютерам о своем намерении начать трансляцию. Пропускная способность снижается. Используется в беспроводных сетях.

    передача маркера . От одного компьютера к другому курсирует блок данных, называемый маркером .

Передачу данных осуществляет компьютер, который «захватил» маркер. Коллизии отсутствуют.

Обычно топология сети и доступ к среде передачи определяются сетевым оборудованием, на основе которого строится сеть.

29. Топология.

В контексте компьютерной сети понятие топология означает способ соединения друг с другом сетевых устройств (оконечных систем, станций, хостов) и кабельной инфраструктуры. Распространенными сетевыми топологиями являются общая шина, кольцо и звезда.

Общая шина - топология сети, при которой станции присоединяются к общей среде передачи, которая представляет собой линейный кабель. Передаваемый сигнал распространяется по всей длине кабеля и принимается всеми станциями, но обрабатывает их только тот компьютер, аппаратный MAC-адрес сетевого адаптера которого записан в кадре как адрес получателя.

Эта топология проста в реализации и дешева. К недостаткам можно отнести:

    трудность масштабирования , сложно увеличить количество компьютеров в сегменте такой сети;

    в каждый момент времени передачу может вести только один из компьютеров. Если передачу одновременно начинают два или больше компьютеров, то возникают коллизии , ведущие к тому, что данные приходится передавать вновь. Производительность такой сети при большом объеме передаваемой информации и числе компьютеров снижается;

    при повреждении шины вся сеть перестает работать.

В настоящее время эта топология используется редко.

Кольцо (Ring)

Кольцо - топология сети, при которой станции соединены с повторителями, образующими замкнутый контур. Передаваемые сигналы распространяются по кольцу в одном направлении и могут приниматься всеми станциями.

На основе этой топологии можно строить сети большой протяженности, так как каждый компьютер выступает в роли повторителя. Из-за отсутствия коллизий сети обладает устойчивостью к перегрузкам. К недостаткам можно отнести:

    увеличивается время передачи информации, так как она передается по кольцу;

    добавление новых компьютеров требует остановки работы всей сети;

    выход из строя хоты бы одного компьютера или сегмента кабеля нарушает работу всей сети;

    поэтому прокладывают обычно два кольца, что удорожает сеть.

Звезда (Star)

Звезда - топология локальной сети, при которой все станции соединены с центральным коммутатором. В этом случае центральный узел называют хабом, или концентратором.

Хаб выполняет функции повторителя, восстанавливает приходящие сигналы и пересылает их всем остальным подключенным к нему компьютерам и устройствам.

Такая организация сети является более надежной. Используется довольно часто. Если вместо концентратора установлены «интеллектуальных» сетевые устройства (мост, коммутатор, маршрутизатор), то это позволяет проводить не только ретрансляцию, но и управление передаваемыми сигналами.

Ячеистая (Mesh)

В таких сетях существует несколько маршрутов для доставки информации. Имеют высокую отказоустойчивость. Развертывание таких сетей на базе кабельных соединений достаточно дорого, так как требует увеличенного количества кабеля, более сложной настойки сетевого оборудования.

Чаще эта топология реализуется в беспроводных сетях.

Смешанные (гибридные) сети

Реальные сети постоянно расширяются и модернизируются, поэтому обычно топология сети представляет собой комбинацию нескольких базовых топологий.

Star-Bus (звезда на шине)

Star-Ring (звезда на кольце)

Hybrid Mesh (гибридная ячеистая структура)

Tree (дерево, звезда на звезде)

Выбор топологии зависит от ряда факторов, таких как надежность, расширяемость и производительность, стоимость, и обычно определяется средой, используемой для передачи данных.

30. Проводные технологии.

Провода переменного тока

Можно использовать при передаче данных на небольшие расстояния.

Телефонные провода

Модем, цифровая/аналоговая связь, бод.

    телефонная коммутированная сеть общего пользования (PSTN);

    цифровая сеть интегрированного обслуживания (ISDN - Integrated Services Digital Network);

    цифровая связь (ADSL - Asymmetric Digital Subscriber Line).

«Витая пара» (twisted pair)

Витая пара состоит из двух изолированных медных проводов, свитых друг с другом, представляет собой один канал связи, несколько витых пар объединяются в кабель, обернутый в плотную защитную оболочку. Скручивание снижает перекрестные помехи от соседних проводов пары. Используется в телефонных сетях и для сетей внутри зданий. Подвержена помехам, поэтому чаще в сетях применяется экранирование с использованием металлической оплетки или оболочки, для телефонных линий - неэкранированная.

Скорость до 100 Гбит/сек, до 2 км без повторителей.

Самый распространенный тип кабеля для создания компьютерных сетей.

Коаксиальный кабель (coaxial cable)

Подобно витой пары состоит из двух проводников, но отличается по конструкции, может работать в более широком диапазоне частот. Коаксиальный кабель состоит из пустотелого внешнего цилиндрического проводника, внутри которого расположен внутренний провод. Внутренний проводник находится в изоляторе, внешний покрывается оболочкой или экраном. Диаметр от 1 до 2,5 см. Может использоваться для передачи данных на большие расстояния, в частности для передачи телесигналов, международной телефонии, компьютерных сетей.

Тонкий - скорость до 10 Мбит/сек на расстояние до 185 м.

Толстый - скорость до 10 Мбис/сек на расстояние до 500 м

В настоящее время используется достаточно редко для создания сетей.

Оптоволокно (fiber optic cable)

Оптическим волокном называют тонкую среду (от 2 до 125 мкм в диаметре), способную передавать световой луч. Для изготовления оптического волокна используют разного рода стекла и пластмассы. Наименьшие потери достигаются в волокне из сверхчистого плавленого кварца. Состоит из трех концентрических секций, две внутренние изготовлены из стекла с различными показателями преломления, сверху светопоглощающая оболочка. Волокна собирают в оптические кабели. Имеет большую пропускную способность, меньшее затухание, электромагнитная изоляция.

Скорость до 10 Гбит/сек, длина сегмента до 40 000 м, рабочая длина волны в диапазоне от 850 до 1300 нм.

К недостаткам можно отнести высокую стоимость кабеля, сложный монтаж, необходимость использования дополнительных трансиверов, преобразующих световые сигналы в электрические и обратно.

Преимущества кабельного соединения:

    высокая пропускная способность;

    помехоустойчивость.

Недостатки:

    трудности при монтаже (доступ к системе канализации, прокладка внутри готовых зданий, привязка рабочих мест);

    кабельное хозяйство требует обслуживания.

Архитектура Ethernet фактически объединяет набор стандартов, имеющих как общие черты, так и отличия. Скорость передачи данных до 10 Гбит/с. Технология Ethernet использует практически любой вид кабеля, позволяет проводить масштабирование, наращивать мощность сети. Поэтому сегодня архитектура Ethernet является самой распространенной в локальных сетях.

31. Беспроводные технологии.

Для телекоммуникации могут быть использованы электромагнитные волны, которые распространяются по атмосфере или в вакууме, а именно (в порядке повышения пропускной способности и увеличения частоты колебания волны):

    радиосвязь (сотовая, спутниковая) (от 30 МГц до 1 ГГц). Обеспечивает высокую дальность передачи информации;

    связь в микроволновом диапазоне (от 2 до 40 ГГц) (Bluetooth, WLAN);

    инфракрасная связь (от 3 · 1011 до 2 · 1014 Гц). Используется для передачи данных на близких расстояниях, например, для взаимодействия с портативными (мобильными) устройствами. Источник и приемник должны быть в прямой видимости.;

    световое излучение в видимом диапазоне. Используется редко.

Обычно сигналы низких частот распространяются от антенны во всех направлениях, сигналы более высоких частот можно сфокусировать в направленный луч.

Если не используется направленная антенна, и на пути нет препятствий, радиоволны распространяются по всем направлениям равномерно и мощность сигнала падает пропорционально квадрату расстояния между передатчиком и приемником. Они используются там, где не существует кабельных каналов или их создание по каким-то причинам невозможно или слишком дорого для передачи телевизионного, радио и других аналоговых сигналов.

Преимущества

    возможность создания в труднодоступных местах;

    не требуют поддержки и обслуживания.

Недостатки:

    не являются помехоустойчивыми;

    менее защищены от прослушивания, чем проводные сети (уровень защиты WEP и WPA).

Wi-Fi (Wireless Fidelity, беспроводная точность) - технология обеспечивающая подключение мобильных пользователей к Интернету. Объединяет несколько стандартов на основе спецификации IEEE 802.11 (a, b, g). Невысокая дальность передачи данных.

WiMAX (Worldwide Interoperability for Microwave Access) - это коммерческое название стандарта беспроводной связи 802.16, принятого в январе 2003 года и поддержанного промышленной группой. В отличие от уже довольно популярного беспроводного доступа Wi-Fi, WiMAX меньше привязан к конкретным диапазонам - его варианты рассчитаны на частоту от 2 до 11 ГГц и от 10 до 66 ГГц. Ширина канала, занимаемого в эфире двумя устройствами, может выбираться в более широких, чем у Wi-Fi, пределах - от 1,5 до 28 МГц. «Изощренная» модуляция позволяет использовать радиоспектр с эффективностью 5 бит на каждый герц (у Wi-Fi 2,7 бит на герц), поэтому скорость достигает 134 Мбит/с (в канале шириной 28 МГц). Но главное преимущество WiMAX - в дальнобойности: максимальное расстояние между устройствами может достигать 50 км. К тому же между источником и приемником может отсутствовать прямая видимость. Мощность сигнала и большая устойчивость к отражениям позволяют WiMAX работать даже там, где Wi-Fi бессилен.

Технология Bluetooth (IEEE 802.15.1) использует радиосигнал с частотой 2,4 ГГц. Имеет низкое энергопотребление, позволяет устройствам устанавливать взаимодействие при минимальном участии пользователя, низкие показатели по дальности и пропускной способности.

32. Протоколы.

Протокол - это правила (соглашения, стандарты) передачи информации в сети. Протокол определяет формат и очередность сообщений, которыми обмениваются два и более устройства, а также действие, выполняемые при передаче и/или приеме сообщений либо при наступлении иных событий.

Так как в процесс взаимодействия вступают разные системы, то реализовывать сетевое соединение в виде одного, монолитного блока не имеет смысла, вводится понятие архитектуры протоколов, когда вместо одного модуля, обслуживающего взаимодействие компьютеров, имеется структурированный набор модулей, реализующих коммуникационные функции.

Можно провести следующую аналогию, когда директор одного предприятия пишет письмо директору другого предприятия, то, написав письмо и указав того, кому оно адресовано, он отдает его секретарю. Секретарь находит адрес получателя, вкладывает письмо в конверт, делает отметку об исходящих в своих документах, относит письмо на почту. Почта обеспечивает доставку письма, которое получает секретарь, делает отметку во входящих, то есть всегда можно проверить, не пропало ли письмо, распечатывает и кладет на стол директора. Каждый уровень взаимодействия не заботиться о том, что происходит ниже его, уверен в том, что он отработает правильно, но может и проверить правильность работы. На каждом уровне к письму добавляется дополнительная идентифицирующая информация, характерная для данного уровня.

Таким образом, можно рассмотреть упрощенную архитектуру протоколов сетевого взаимодействия. В процессе сетевого взаимодействия вовлечены: приложения, компьютеры и сети, с учетом этого естественно решать задачу взаимодействия на трех независимых уровнях:

    уровень доступа к сети;

    транспортный уровень;

    прикладной уровень.

Уровень доступа к сети обеспечивает обмен данными между компьютером и сетью, компьютер, передающий данные, сообщает сети адрес компьютера, которому эти данные предназначены, причем тип сети может быть самый разный.

Все задачи, которые связаны с надежностью передачи, выполняет транспортный уровень, проверяет, чтобы все данные достигли адресата и были получены им в нужном порядке.

На прикладном уровне приложения выполняют необходимые им действия, осуществляют взаимодействие с пользователем, если необходимо запрашивают сетевую среду у транспортного уровня, например, для передачи файлов.

На каждом уровне добавляется служебная информация, необходимая для передачи данных (заголовки), на каждом уровне может быть свое деление на единицы обмена (пакеты).

На каждом уровне требуется информация для идентификации получателя, так на уровне приложений  это будет точка доступа к службе (порт), транспортном уровне  логическое имя компьютера, а на сетевом  имя сетевого интерфейса (MAC-адрес).

Разные производители используют различные форматы данных и различные протоколы обмена данными, чтобы они могли взаимодействовать между собой, разрабатываются общие стандарты. Существуют несколько распространенных архитектур протоколов:

    стек протоколов TCP/IP;

    эталонная модель OSI;

    сетевая архитектура IBM, привязанная к оборудованию этой фирмы.

33. Стек протоколов TCP/IP.

Хотя для этой модели отсутствует официальная модель, она является на настоящий момент времени самой распространенной, в ней можно выделить пять уровней протоколов, образующие стек протоколов:

    прикладной уровень;

    транспортный уровень;

    сетевой уровень;

    канальный уровень;

    физический уровень.

Физический уровень отвечает за физический интерфейс между устройством и средой передачи данных, на нем идет работа с характеристиками передающей среды, природой сигналов, скоростью передачи данных и т.п. Поддерживает основные технологии локальных сетей - Ethernet, Wi-Fi, Token Ring, Bluetooth и т.д.

Канальный уровень организует передачу данных в имеющейся физической среде.

Сетевой уровень отвечает за маршрутизацию сообщений при прохождении по сети (Internet Protocol, IP).

Транспортный уровень отвечает за надежность передачи данных. Поддерживает два протокола:

    Transmission Control Protocol, TCP, протокол управления передачей. Обеспечивает гарантированную доставку пакетов в нужном порядке и без ошибок. Используется в тех приложениях, где важно обеспечить целостность передачи данных;

    функции Финансовые функции финансовых вычислений без построения длинных и сложных... быть успешно использован и в задачах, содержащих финансовые функции . Рассмотрим подбор значения вклада для...

  • 1 финансовые функции в excel

    Анализ

    1. Финансовые функции в Excel. Финансовые функции в Excel позволяют выполнить целый ряд финансовых вычислений без построения длинных и... сложных формул. Выделяют четыре группы функций :  функции ...

  • «финансовое право » 2001 год оглавление

    Документ

    Задач. Во-вторых, осуществление государством финансовых функций протекает (в зависимости от их содержания... страны, имеет непосредственное отношение к выполнению функций фи­нансовой деятельности государства и муниципальных образо­ваний. По...

  • Финансовая математика

    Пояснительная записка

    9. Расчеты на компьютере. Использование стандартных финансовых функций EXSEL. Условные обозначения основных параметров... в левом окне сделать выбор категории функции финансовые ”. После чего в правом, прокручивая список...

  • Учебное пособие «Финансовая математика»

    Учебное пособие

    6. Финансовые функции ЕХСЕL как основа практических расчетов в современных условиях 6.1. Сущность финансовых функций 6.2. Использование финансовых функций в финансовых операциях...

Выбор и обоснование среды передачи данных

1. Общие характеристики среды передачи данных

Среды передачи данных разделяются на две категории. Кабельная среда передачи (носитель) - с центральным проводником, заключенным в пластиковую оболочку.

Кабели широко используются в небольших локальных сетях. Кабель обычно передает сигналы в нижней части электромагнитного спектра, что представляет собой обычный электрический ток и иногда радиоволны.

Беспроводная среда передачи данных предполагает использование более высоких частот электромагнитного спектра.

Это радиоволны, микроволны и инфракрасные лучи. Такая среда необходима для мобильных компьютеров или сетей, передающих данные на большие расстояния. Обычно она применяется в сетях предприятий и в глобальных сетях (в сотовом телефоне для передачи сигнала применяется микроволновый сигнал).

В сетях, охватывающих несколько географических пунктов, часто используется комбинация кабельной и беспроводной сред передачи данных.

При выборе оптимального типа носителя следует знать следующие характеристики среды передачи данных:

- стоимость;

- сложность установки;

- пропускную способность;

- затухание сигнала;

- подверженность электромагнитным помехам (EMI, Electro-Magnetic Interference);

- возможность несанкционированного прослушивания.

Стоимость. Стоимость каждой среды передачи данных следует сравнить с ее производительностью и доступными ресурсами.

Сложность установки. Сложность установки зависит от конкретной ситуации, но можно провести некоторое обобщенное сопоставление сред передачи данных. Одни типы носителей устанавливаются с помощью простых инструментов и не требуют большой подготовки, другие нуждаются в длительном обучении сотрудников, и их установку лучше предоставить профессионалам.

Пропускная способность. Возможности среды передачи данных обычно оцениваются по полосе пропускания. В коммуникациях понятие "полоса пропускания" означает диапазон частот, пропускаемых средой передачи данных. В сетях она оценивается по числу бит, которые можно передать через данный носитель в секунду. На полосу частот кабеля влияют также методы передачи сигналов.

Число узлов. Важной характеристикой сети является число компьютеров, которые можно легко подключить к сетевым кабелям. Каждая сетевая кабельная система имеет естественное для нее число узлов, превышение которого требует применения специальных устройств: мостов, маршрутизаторов, повторителей и концентраторов, позволяющих расширить сеть.

Затухание сигналов. При передаче электромагнитные сигналы слабеют. Это явление называется затуханием.

Электромагнитные помехи. Электромагнитные помехи (EMI) влияют на передаваемый сигнал. Они вызываются внешними электромагнитными волнами, искажающими полезный сигнал, что затрудняет его декодирование принимающим компьютером. Некоторые среды передачи данных более подвержены электромагнитным помехам, чем другие. Помехи называют также шумами.

В качестве среды передачи данных в электронной связи можно использовать:

· коаксиальный кабель;

· витую пару проводов (twisted pair);

· волоконно оптический кабель;

· инфракрасное излучение;

· микроволновый диапазон радиоэфира;

· радиодиапазон эфира.

На сегодняшний день подавляющая часть компьютерных сетей в большинстве случаев для соединения использует провода или кабели.

Так, фирма Belden, ведущий производитель кабелей, публикует каталог, где предлагает более 2200 их типов. К счастью, в большинстве сетей применяются только три основные группы кабелей:

1. коаксиальный кабель (coaxial cable);

2. витая пара (twisted pair):

неэкранированная (Unshielded Twisted Pair, UTP);

экранированная (Shielded Twisted Pair, STP);

3. оптоволоконный кабель (fiber optic).

2. Кабели на основе витых пар

Витые пары проводов используются в самых дешевых и на сегодняшний день, пожалуй, самых популярных кабелях.

Кабель на основе витых пар представляет собой несколько пар скрученных изолированных медных проводов в единой диэлектрической (пластиковой) оболочке. Он довольно гибкий и удобный для прокладки.

Обычно в кабель входят две или четыре витые пары. Неэкранированные витые пары характеризуются слабой защищенностью от внешних электромагнитных помех, а также слабой защищенностью от подслушивания с целью, например, промышленного шпионажа.

Перехват передаваемой информации возможен как с помощью контактного метода (посредством двух иголочек, воткнутых в кабель), так и с помощью бесконтактного метода, сводящегося к радиоперехвату излучаемых кабелем электромагнитных полей. Для устранения этих недостатков применяется экранирование.

В случае экранированной витой пары STP каждая из витых пар помещается в металлическую оплетку-экран для уменьшения излучений кабеля, защиты от внешних электромагнитных помех и снижения взаимного влияния пар проводов друг на друга (crosstalk - перекрестные наводки). Естественно, экранированная витая пара гораздо дороже, чем неэкранированная, а при ее использовании необходимо применять и специальные экранированные разъемы, поэтому встречается она значительно реже, чем неэкранированная витая пара.

Основные достоинства неэкранированных витых пар - простота монтажа разъемов на концах кабеля, а также простота ремонта любых повреждений по сравнению с другими типами кабеля. Все остальные характеристики у них хуже, чем у других кабелей.

Согласно стандарту EIA/TIA 568 существуют пять категорий кабелей на основе неэкранированной витой пары (UTP).

3. Коаксиальные кабели

Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального провода и металлической оплетки, разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку.

Коаксиальный кабель до недавнего времени был распространен наиболее широко, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), а также более высокими, чем в случае витой пары, допустимыми скоростями передачи данных (до 500 Мбит/с) и большими допустимыми расстояниями передачи (до 1 км и выше).

К нему труднее механически подключиться для несанкционированного прослушивания сети, он также дает заметно меньше электромагнитных излучений вовне.

Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5-3 раза по сравнению с кабелем на основе витых пар). Сложнее и установка разъемов на концах кабеля. Поэтому его сейчас применяют реже, чем витую пару.

Основное применение коаксиальный кабель находит в сетях с топологией типа "шина".

При заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры, подключенные к сети. Терминаторы должны быть обязательно согласованы с кабелем, то есть их сопротивление должно быть равно волновому сопротивлению кабеля.

Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.

Существует два основных типа коаксиального кабеля:

тонкий (thin) кабель, имеющий диаметр около 0,5 см, более гибкий;

толстый (thick) кабель, имеющий диаметр около 1 см, значительно более жесткий. Он представляет собой классический вариант коаксиального кабеля, который уже почти полностью вытеснен более современным тонким кабелем.

Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, так как в нем сигнал затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения.

Подключение к тонкому кабелю (с помощью разъемов BNC байонетного типа) проще и не требует дополнительного оборудования, а для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт - как с центральной жилой, так и с экраном.

Толстый кабель примерно вдвое дороже, чем тонкий. Поэтому тонкий кабель применяется гораздо чаще.

Стоимость в расчете на место. Тонкий коаксиальный кабель имеет более низкую цену в расчете на рабочую станцию - около $ 25. Можно приобрести эти кабели с уже подключенными разъемами.

Проложить такие кабели сможет любой - они просто соединяются цепочкой от компьютера к компьютеру.

Прокладка толстого коаксиального кабеля обычно стоит порядка $ 50 на станцию. Кроме того, для каждой станции потребуются трансиверы (около $ 100).

Ограничения по расстоянию. Общая длина шины на тонком коаксиальном кабеле ограничена 185 м. Толстый коаксиальный кабель имеет общее ограничение в 500 м (в структурах без повторителей).

4. Оптоволоконные кабели

Оптоволоконный (он же - волоконно-оптический) кабель - это принципиально иной тип кабеля по сравнению с рассмотренными двумя типами электрического или медного кабеля.

Информация по нему передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля, только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции - стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна.

Оптоволоконный кабель обладает исключительными характеристиками по помехозащищенности и секретности передаваемой информации.

Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам этот сигнал принципиально не порождает внешних электромагнитных излучений.

Подключиться к этому типу кабеля для несанкционированного прослушивания сети практически невозможно, так как это требует нарушения целостности кабеля.

Теоретически возможная полоса пропускания такого кабеля достигает величины 10 ГГц, что несравнимо выше, чем у любых электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет около 5 дБ/км. Самый главный из них - высокая сложность монтажа.

Хотя оптоволоконные кабели и допускают разветвление сигналов (для этого выпускаются специальные разветвители на 2-8 каналов), как правило, их используют для передачи данных только в одном направлении, между одним передатчиком и одним приемником.

Чувствителен он и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, т.е. увеличивается затухание сигнала. Оптоволоконные кабели чувствительны также к механическим воздействиям (удары, ультразвук) - так называемый микрофонный эффект. Для его уменьшения используют мягкие звукопоглощающие оболочки.

Применяют оптоволоконный кабель только в сетях с топологией "звезда" и "кольцо". Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети.

Существуют два различных типа оптоволоконных кабелей:

многомодовый (или мультимодовый) кабель - более дешевый, но менее качественный;

одномодовый кабель - более дорогой, но имеющий лучшие характеристики.

Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм).

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки - 125 мкм (это иногда обозначается как 62,5/125). Длина волны света в многомодовом кабеле равна 0,85 мкм.

Допустимая длина кабеля достигает 2-5 км.

Типичная величина задержки для наиболее распространенных кабелей составляет 4-5 нс/м.

Ограничения по расстоянию. В Ethernet 10Base-FL расстояние многомодового волоконно-оптического кабеля ограничивается 2000 м, а при использовании Fast Ethernet 100Base-F - 400 м.

Оба ограничения связаны с временными характеристиками Ethernet, а не со свойствами самого кабеля.

Предел пропускной способности для современных волоконно-оптических кабелей составляет 622 Мбит/с на расстоянии 1000 м. При каждом сокращении длины кабеля вдвое его полоса пропускания удваивается.

Радиоканал использует передачу информации с использованием радиоволн, поэтому он может обеспечить связь на многие десятки, сотни и даже тысячи километров.

Скорость передачи может достигать десятков мегабит в секунду (здесь многое зависит от выбранной длины волны и способа кодирования). Однако в локальных сетях радиоканал не получил широкого распространения из-за довольно высокой стоимости передающих и приемных устройств, низкой помехозащищенности, полного отсутствия секретности передаваемой информации и низкой надежности связи.

А вот для глобальных сетей радиоканал часто является единственно возможным решением, так как позволяет с помощью спутников-ретрансляторов сравнительно просто обеспечить связь со всем миром. Используют радиоканал и для связи двух и более локальных сетей, находящихся далеко друг от друга, в единую сеть.

Таблица 1

900 МГц с 1 к! ре дачей сигнала в широком спектре

Такие решения обычно обеспечивают полосу пропускания 2 Мбит/с на расстояние в 5 000 м. Эти радиосети функционируют во многом аналогично сотовым телефонам и не требуют расположения передатчика и приемника в зоне прямой видимости. Стоимость их составляет, как правило, около $ 5 000 на станцию

с передачей

в широком

Использование диапазона 2,4 ГГц лицензируется FCC, и в настоящее время планируется выпуск устройств, которые будут работать в данном диапазоне

с передачей

в широком

Решения в диапазоне 5,8 ГГц обеспечивают передачу данных со скоростью около 6 Мбит/с на расстояние до 244 м. Эти устройства потребляют мало электроэнергии и обеспечивают большую пропускную способность, чем 900 МГц-варианты, но не подходят для связи на значительные расстояния. Стоимость составляет около $ 1 000 на станцию

Микроволновая передача на частоте 23 ГГц

Микроволновая передача на частоте 23 ГГц обладает среди беспроводных решений наилучшими характеристиками в плане производительности и расстояния. Такие решения реализуются по схеме "точка-точка", а приемник и передатчик должны находиться в зоне прямой видимости. Они позволяют передавать данные со скоростью 6 Мбит/с на расстояние до 50 км, но очень подвержены влиянию погоды и достаточно дороги. Стоимость в расчете на станцию составляет обычно $ 15 000

Инфракрасный канал также не требует соединительных проводов, так как использует для связи инфракрасное излучение (подобно пульту дистанционного управления домашнего телевизора).

Главное его преимущество по сравнению с радиоканалом - нечувствительность к электромагнитным помехам, что позволяет применять его, например, в производственных условиях.

Правда, в данном случае требуется довольно высокая мощность передачи, чтобы не влияли никакие другие источники теплового (инфракрасного) излучения. Плохо работает инфракрасная связь и в условиях сильной запыленности воздуха.

Предельные скорости передачи информации по инфракрасному каналу не превышают 5-10 Мбит/с.

Инфракрасные каналы делятся на две группы.

Каналы прямой видимости, в которых связь осуществляется на лучах, идущих непосредственно от передатчика к приемнику. При этом связь возможна только при отсутствии препятствий между компьютерами сети. Протяженность канала прямой видимости может достигать нескольких километров.

Каналы на рассеянном излучении, которые работают на сигналах, отраженных от стен, потолка, пола и других препятствий. Препятствия в данном случае не страшны, но связь может осуществляться только в пределах одного помещения.

Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. Синонимом термина линия связи (line) является термин канал связи(channel) .

Физическая среда передачи данных (medium) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.

В зависимости от среды передачи данных линии связи разделяются на следующие:

    проводные (воздушные);

    кабельные (медные и волоконно-оптические);

    радиоканалы наземной и спутниковой связи.

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используются и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коаксиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой (twisted pair) . Витая пара существует в экранированном варианте (Shielded Twistedpair, STP), когда пара медных проводов обертывается в изоляционный экран, и неэкранированном (Unshielded Twistedpair, UTP) , когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель (coaxial) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Существует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения - для локальных сетей, для глобальных сетей, для кабельного телевидения и т. п. Волоконно-оптический кабель (optical fiber) состоит из тонких (5-60 микрон) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля - он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция (Frequency Modulation, FM), а также диапазонах сверхвысоких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются волоконно-оптические. На них сегодня строятся как магистрали крупных территориальных сетей, так и высокоскоростные линии связи локальных сетей. Популярной средой является также витая пара, которая характеризуется отличным соотношением качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя - например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользователем сети, таким как шофер грузовика, врач, совершающий обход, и т. п.