Революции среди пзу постоянные запоминающие. ПЗУ — где хранится и зачем нужна. Расшифровка и объяснение

Основные положения.

Память в микропроцессорной системе выполняет функцию хранения данных. Различные типы памяти предназначены для хранения различных типов данных. Подробнее это будет рассмотрено ниже.

Информация в памяти хранится в ячейках, количество разрядов которых равно количеству разрядов шины данных процессора. Обычно оно кратно восьми. Это связано с тем, что байт является восьмиразрядной единицей измерения. Поэтому объём памяти чаще всего измеряется в байтах независимо от разрядности ячейки памяти.

Допустимое количество ячеек памяти определяется количеством разрядов шины адреса как 2N, где N - количество разрядов шины адреса.

Используются также следующие более крупные единицы объема памяти: килобайт - 210=1024 байта (обозначается Кбайт), мегабайт – 220=1 048 576 байт (обозначается Мбайт), гигабайт - 230 байт (обозначается Гбайт), терабайт - 240 (обозначается Тбайт). Например, если память имеет 65 536 ячеек, каждая из которых 16-разрядная, то говорят, что память имеет объем 128 Кбайт. Совокупность ячеек памяти называется обычно пространством памятисистемы.

Для подключения модуля памяти к системной магистрали используются блоки сопряжения, которые включают в себя дешифратор (селектор) адреса, схему обработки управляющих сигналов магистрали и буферы данных (рис. 8.1). Для подключения модуля памяти к системной магистрали используются блоки сопряжения, которые включают в себя дешифратор (селектор) адреса, схему обработки управляющих сигналов магистрали и буферы данных (рис. 2.18).

Обычно в составе системы имеется несколько модулей памяти, каждый из которых работает в своей области пространства памяти. Селектор адреса как раз и определяет, какая область адресов пространства памяти отведена данному модулю памяти. Схема управления вырабатывает в нужные моменты сигналы разрешения работы памяти (CS – Chip Select) и сигналы разрешения записи в память (WR — Write-Read). Буферы данных передают данные от памяти к магистрали или от магистрали к памяти. В пространстве памяти микропроцессорной системы обычно выделяются несколько особых областей, которые выполняют специальные функции.

Классификация модулей памяти.

Классификация памяти необходима для более чёткого понимания того, для чего та или иная память будет использоваться.

Прежде всего, память делится на две основные подгруппы: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).

Постоянное запоминающее устройство (ПЗУ).

Постоянным запоминающим устройством называют энергонезависимую память, т.е. память, не зависящую от наличия напряжения питания на устройстве. В таком устройстве информация может храниться длительное время без подключения его к источнику питания.

Данный тип памяти предназначен для хранения информации, которая не должна быть уничтожена при пропадании питания на устройстве. К таким данным можно отнести программу для микроконтроллера, данные о настройке этой программы, различные файлы. К файлам могут относиться графические изображения, данные, снятые с датчиков и т.д.

Существует множество различных реализаций ПЗУ. В микроконтроллерах наибольшую популярность получили две технологии. Это – EEPROM (Electronically Erasable Programmable ROM – электрически стираемая программируемая энергонезависимая память) и flash (Flash Erase EEPROM).

EEPROM была разработана в 1979 году фирмой Intel. Эта память имеет возможность перепрограммирования при подключении её к стандартной шине процессора. Причём стирание любой ячейки памяти происходит автоматически при записи в неё новых данных. Т.о. в этом типе памяти существует возможность изменить информацию в одной ячейке без затрагивания соседних ячеек.

Flash память является дальнейшим развитием EEPROM. В ней используется несколько отличный от EEPROM тип ячейки-транзистора. И другая организация доступа к ячейкам памяти. В результате чего доступ к ячейкам стал быстрее. Но стирание в flash памяти производится только для определённого блока данных, либо для всей микросхемы в целом. Стереть один элемент в ней невозможно. А так как запись в этом типе микросхемы (для типа памяти NAND) производится поэлементным «И» текущего состояния ячейки с данными которые надо записать, то верные данные будут записаны в ячейку только в том случае, если в ней будут записаны только одни единицы. Установить в ячейке единицу можно только функцией стирания. Никакой записью данных этого сделать нельзя. Следовательно, для того, чтобы записать данные в одну ячейку памяти, надо скопировать в стороннюю память весь блок, который будет стёрт, стереть его. В памяти поменять значение нужной ячейки и уже изменённый блок записать обратно.

Как можно видеть работа с отдельными ячейками данных медленная из-за необходимости каждый раз копировать и стирать целый блок данных. Но работа сразу со всем блоком на много быстрее чем в EEPROM.

Т.о. во Flash имеет смысл хранить информацию, которая будет изменяться редко (или никогда). А в EEPROM можно записывать настройки программы, которые должны сохраниться после отключения устройства от питания.

Flash память бывает двух типов – это NOR и NAND. NOR (Not OR) имеет быстрый произвольный доступ к ячейкам памяти и возможность побайтовой записи. NAND (Not AND) позволяет производить быструю запись и стирание данных, но имеет несколько большее время произвольного доступа к данным по сравнению с NOR.

Исходя из особенностей структур памяти, NAND обычно используется для хранения информации, считываемой потоком, такой как видео, музыка и т.д. NOR же используется для хранения программы, благодаря высокой скорости чтения произвольного байта данных.

ПЗУ имеет относительно низкое быстродействие и не может быть использован для хранения информации, к которой нужен быстрый доступ, такой как переменные.

Память программы начального запускавсегда выполняется на ПЗУ. Именно с этой области процессор начинает работу после включения питания и после сброса его с помощью сигнала RESET. При наличии у микроконтроллера нескольких типов ПЗУ, зачастую существует выбор с какой из них стартовать программу. Для этого наружу выводится несколько ножек, комбинация сигналов на которых идентифицирует ту или иную ПЗУ.

Адресация в NAND.

Для примера работы с ПЗУ рассмотрим организацию памяти и обращение к ней на примере микросхемы памяти NAND.

Структура памяти NAND представлена на рис 8.2.

Память в микросхеме делится на блоки, которые в свою очередь делятся на страницы, состоящие из байт. Т.о. для полной адресации байта памяти требуется знать номер блока, номер страницы и сам адрес байта в этой странице.

Общая ёмкость памяти в этом случае равна произведению ёмкости страницы на количество страниц в блоке и на количество блоков в микросхеме памяти. Если у нас, как показано на рис 8.2, микросхема состоит из 2000 блоков, содержащих 128 страниц каждый. В странице содержится 8192 байта памяти. В итоге получаем: 8192*128*2000 = 2 Гбайта памяти. Обычно размер памяти указывают в битах. Т.е. размер рассматриваемой микросхемы составляет 16Гбит, что и будет указано у неё в документации.

Соответственно, для получения одного байта информации на выводе R/W, отвечающем за чтение запись, устанавливается сигнал, говорящий, что будет чтение. Отправляется команда запроса на чтение байта данных. Затем формируется пакет вида, как показано на рис 8.3.

В этом пакете А13-А0 – это адрес байта в странице, А20-А14 – это номер страницы, А32-А21 – это номер блока.

В ответ на этот запрос микросхема должна выдать запрошенный байт. При этом, если требуется считать несколько байт подряд, то достаточно просто продолжать считывать данные, не обновляя адрес. Микросхема автоматически увеличивает адрес на единицу при каждом чтении. Т.е. при использовании данной микросхемы выгодно читать данные сразу страницами (в нашем примере по 8192 байта).

Статьи к прочтению:

ПЗУ — Постоянное Запоминающее Устройство

ПЗУ – память, информация в которой, будучи однажды записанной, изменению не подлежит. Например, программа загрузки в ОЗУ микропроцессорной системы информации из внешней памяти. Все типы ПЗУ используют один и тот же принцип построения схемы. Информация в ПЗУ представляется в виде наличия или отсутствия соединения между шинами адреса и данных.

Условное графическое обозначение ПЗУ представлено на рис.26.10.

Рис.26.10. Условное графическое обозначение ПЗУ

Рис. 26.11. Схема ПЗУ

На рис. 26.11 приведена схема простейшего ПЗУ. Для реализации ПЗУ достаточно использовать дешифратор, диоды, набор резисторов и шинные формирователи. Рассматриваемое ПЗУ содержит разрядных слова, т.е. его общий объем составляет 32 бит. Количество столбцов определяет разрядность слова, а количество строк – количество 8 разрядных слов. Диоды устанавливаются в тех местах, где должны храниться биты, имеющие значение логического «0» (дешифратор подает 0 на выбранную строку). В настоящее время вместо диодов ставят МОП-транзисторы.

В табл. 26.1 приведено состояние ПЗУ, схема которого приведена на рис. 26.11.

Таблица 26.1

Состояние простого ПЗУ

Слово Двоичное представление
А0 А1 D1 D2 D3 D4 D5 D6 D7 D8

Как правило, ПЗУ имеют многоразрядную организацию со структурой 2DM . Технологии изготовления самые разнообразные – КМОП, n-МОП, ТТЛ(Ш) и диодные матрицы.

Все ПЗУ можно разделить на следующие группы: программируемые при изготовлении (масочные), с однократным программированием и перепрограммируемые.

В запоминающих устройствах, программируемых при изготовлении (ПЗУ или ROM), информация записывается непосредственно в процессе их изготовления с помощью фотошаблона, называемого маской, на завершающем этапе технологического процесса. Такие ПЗУ называемые масочными, построены на диодах, биполярных или МОП транзисторах.

Область использования масочных ПЗУ – хранение стандартной информации, например знакогенераторы (коды букв латинского и русского алфавита), таблицы типовых функций (синусы, квадратичные функции), стандартное программное обеспечение.

Программируемые постоянные запоминающие устройства (ППЗУ, или PROM ) – ПЗУ с возможностью однократного электрического программирования. Этот вид памяти позволяет пользователю однократно запрограммировать микросхему памяти с помощью программаторов.

Микросхемы ППЗУ построены на запоминающих ячейках с плавкими перемычками. Процесс программирование заключается в избирательном пережигании плавких перемычек с помощью импульсов тока достаточной амплитуды и длительности. Плавкие перемычки включаются в электроды диодов или транзисторов.

На рис. 26.12 приведена схема ППЗУ с плавкими перемычками. Оно изготавливается со всеми диодами и перемычками, т.е. в матрице все «0», а при программировании пережигаются те перемычки, в ячейках которых должны быть логические «1».

Рис. 26.12. Фрагмент схемы ППЗУ

Репрограммируемые постоянные запоминающие устройства (РПЗУ и РПЗУ УФ) – ПЗУ с возможностью многократного электрического программирования. В ИС РПЗУ УФ (EPROM ) старая информация стирается с помощью ультрафиолетовых лучей, для чего в корпусе микросхемы имеется прозрачное окошко; в РПЗУ (EEPROM ) – с помощью электрических сигналов.

Запоминающие ячейки РПЗУ строятся на n -МОП или КМОП транзисторах. Для построения ЗЭ используются различные физические явления хранения заряда на границе между двумя диэлектрическими средами или проводящей и диэлектрической средой.

В первом варианте диэлектрик под затвором МОП транзистора делают из двух слоев: нитрида кремния и двуокиси кремния. Этот транзистор называется МНОП: металл – нитрид кремния – окисел – полупроводник. На границе диэлектрических слоев возникают центры захвата зарядов. Благодаря туннельному эффекту носители заряда могут проходить сквозь тонкую пленку окисла и скапливаться на границе раздела слоев. Этот заряд, являющийся носителем информации, хранимой МНОП-транзистором, приводит к изменению порогового напряжения транзистора. При этом пороговое напряжение возрастает настолько, что рабочее напряжение на затворе транзистора не в состоянии его открыть. Транзистор, в котором заряд отсутствует, легко открывается. Одно из состояний определено как логическая единица, второе – ноль.

Во втором варианте затвор МОП транзистора делают плавающим, т.е. не связанным с другими элементами схемы. Такой затвор заряжается током лавинной инжекции при подаче на сток транзистора высокого напряжения. В результате заряд на плавающем затворе влияет на ток стока, что используется при считывании информации, как и в предыдущем варианте с МНОП транзистором. Такие транзисторы получили название ЛИЗМОП (МОП транзистор с лавинной инжекцией заряда). Так как затвор транзистора окружен изолятором, ток утечки очень мал и информация может храниться достаточно долго (десятки лет).

В РПЗУ с электрическим стиранием над плавающим затвором транзистора размещают второй – управляющий затвор. Подача напряжения на него вызывает рассасывание заряда на плавающем затворе за счет туннельного эффекта. РПЗУ имеют весомые преимущества перед РПЗУ УФ, так как не требуют для перепрограммирования специальных источников ультрафиолетового света. ЗУ с электрическим стиранием практически вытеснили ЗУ с ультрафиолетовым стиранием.

Фрагмент схемы РПЗУ с использованием двухзатворных транзисторов типа ЛИЗМОП показан на рис. 26.13. Запись логического нуля осуществляется в режиме программирования с помощью заряда плавающего затвора. Стирание информации, т.е. разряд плавающего затвора, означает запись логической единицы. В этом случае при подаче сигнала по линии выборки опрашиваемые транзисторы открываются и передают напряжение U ПИТ на линии считывания.

Современные РПЗУ имеют информационную емкость до 4 Мбит при тактовой частоте до 80 МГц.

26.5. Flash -память

Основные принципы работы и тип запоминающих элементов Flash -памяти аналогичны ППЗУ с электрической записью и стиранием информации, построенной на транзисторах с плавающим затвором. Как правило, благодаря своим особенностям, Flash -память выделяют в отдельный класс. В ней производится стирание или всей записанной информации одновременно, или больших блоков информации, а не стирание отдельных слов. Это позволяет исключить схемы управления записью и стиранием отдельных байтов, что дает возможность значительно упростить схему ЗУ и достичь высокого уровня интеграции и быстродействия при снижении стоимости.

Рис.26.13. Фрагмент схемы РПЗУ

Современные тенденции развития электронных приборов требуют постоянного увеличения объема используемой памяти. На сегодня инженеру доступны микросхемы как энергозависимой памяти типа DRAM , которую характеризуют предельно низкая цена за бит и большие уровни интеграции, так и энергонезависимой Flash -памяти, себестоимость которой постоянно снижается и стремится к уровню DRAM .

Потребность в энергонезависимой Flash -памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе Flash -памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в Flash -памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, Flash -память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR (ИЛИ-НЕ) и NAND (И-НЕ). Структура NOR (рис. 26.14, а) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис. 26.14, б) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

Рис.26.14. Структуры на основе NOR (a) и NAND (б)

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR . Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-Flash лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-Flash ниже, чем в других технологиях Flash -памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Более детально особенности микросхем Flash -памяти можно рассмотреть на примере кристаллов серии HY 27xx(08/16)1G 1M фирмы Hynix . На рис. 26.15 показана внутренняя структура и назначение выводов этих приборов.

Микросхема имеет следующие выводы:

I/O 8-15 – вход/выход данных для х16 устройств

I/O 0-7 – вход/выход данных, адресный вход или вход команд для х8 и х16 устройств;

ALE – включение адресной защелки;

CLE – включение защелки команд;

– выбор кристалла;

– разрешение чтения;

– чтение/занят (выход с открытым стоком);

– разрешение записи;

– защита от записи

V CC – напряжение питания;

V SS – общий вывод.

Рис.26.15. Схема внешних выводов (а), назначение выводов (б) и структурная схема (в) Flash -памяти

Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read ). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.

Рис.26.16. Организация массива памяти NАND -структуры

Массив памяти NAND -структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис. 26.16).

Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC ), программных флагов и идентификаторов негодных блоков (Bad Block ) основной области. В 8-битных устройствах страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В 16-ти битных устройствах страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.

Память на основе ячеек NOR имеет сравнительно большие времена стирания и записи, но обладает доступом к каждому биту на чтение. Данное обстоятельство позволяет применять такие микросхемы для записи и хранения программного кода, который не требует частого перезаписывания. Такими применениями могут быть, например, BIOS для встраиваемых компьютеров или ПО для телевизионных приставок.

Свойства NAND-Flash определили область ее применения: карты памяти и иные устройства хранения данных. Сейчас данный тип памяти применяется почти повсеместно в мобильных устройствах, фото- и видеокамерах и т.д. NAND-Flash лежит в основе практически всех типов карт памяти: SmartMedia , MMC , SecureDigital, MemoryStick

Достигнутая в настоящее время информационная емкость Flash -памяти достигает 8ГБит, типовая совокупная скорость программирования и стирания составляет до 33.6 мС / 64 кБ при тактовой частоте до 70 МГц.

Двумя основными направлениями эффективного использования Flash -памяти являются хранение редко изменяемых данных и замена памяти на магнитных дисках. Для первого направления используется Flash -память с адресным доступом, а для второго – файловая память.

26.6. ОЗУ типа FRAM

FRAM – оперативное энергонезависимое ЗУ, сочетающее высокое быстродействие и малую потребляемую мощность, присущие ОЗУ, со свойством хранения данных при отсутствии приложенного напряжения.

В сравнении с EEPROM и Flash -памятью время записи данных в ЗУ этого типа и потребляемая мощность намного меньше (менее 70 нс против нескольких миллисекунд), а ресурс по циклам записи намного выше (не менее 10 11 против 10 5 …10 6 циклов для EEPROM ).

FRAM должна стать в ближайшем будущем самой популярной памятью в цифровых устройствах. FRAM будет отличаться не только быстродействием на уровне DRAM , но и возможностью сохранять данные при отключении энергии. Словом, FRAM может вытеснить не только медленную Flash , но и обычную ОЗУ типа DRAM . Сегодня ферроэлектрическая память находит ограниченное применение, к примеру, в RFID -тэгах. Ведущие компании, в числе которых Ramtron, Samsung, NEC, Toshiba , активно развивают FRAM . Примерно к 2015 году на рынок должны поступить n -гигабайтные модули FRAM .

Указанные свойства FRAM обеспечивает сегнетоэлектрик (перовскит), используемый в качестве диэлектрика накопительного конденсатора ячейки памяти. При этом сегнетоэлектрическое ЗУ хранит данные не только в виде заряда конденсатора (как в традиционных ОЗУ), но и виде электрической поляризации кристаллической структуры сегнетоэлектрика. Сегнетоэлектрический кристалл имеет два состояния, которые могут соответствовать логическим 0 и 1.

Термин FRAM еще не устоялся. Первые FRAM получили название – ферродинамические ОЗУ. Однако в настоящее время в качестве запоминающих ячеек используется сегнетоэлектрик и сейчас FRAM часто называют сегнетоэлектрическим ОЗУ.

Первые FRAM имели 2Т /2С -архитектуру (рис.26.17, а), на основе которой выполняется и большинство современных микросхем сегнетоэлектрической памяти. Ячейка такого типа, в которой каждому биту соответствует индивидуальный опорный бит, позволяет определить разницу зарядов с высокой точностью. А благодаря считыванию дифференциального сигнала исключается влияние разброса параметров конденсаторов ячеек. Позже появились FRAM с архитектурой 1Т /1С (рис.26.17, б). Достоинство микросхем с такой архитектурой – меньшая, чем в обычных схемах площадь ячейки и, следовательно, меньшая стоимость микросхемы в пересчете на единицу информационной емкости.

На рис.26.18 приведена структурная схема сегнетоэлектрического ОЗУ (FRAM ) объемом 1 Мбит и параллельным интерфейсом доступа FM 20L 08 фирмы Ramtron . В таблице 26.1. показаны выводы микросхемы.

FM 20L 08 – энергонезависимая память с организацией 128К×8, которая считывается и записывается подобно стандартному статическому ОЗУ. Сохранность данных обеспечивается в течение 10 лет, при этом, нет необходимости задумываться о надежности хранения данных (неограниченная износостойкость), упрощается проектирование системы и исключается ряд недостатков альтернативного решения энергонезависимой памяти на основе статического ОЗУ с резервным батарейным питанием. Быстрота записи и неограниченное количество циклов перезаписи делают FRAM лидером по отношению к другим типам энергонезависимой памяти.

Рис.26.17. Ячейка памяти типа 2Т /2С (а) и 1Т /1С (б)

Рис.26.18. Структурная схема FRAM FM 20L 08

ПЗУ

противоэпидемическое управление

Словарь:

ПЗУ

пылезащитное устройство

Словарь: С. Фадеев. Словарь сокращений современного русского языка. - С.-Пб.: Политехника, 1997. - 527 с.

ПЗУ

пиротехническое зажигательное устройство

техн.

Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. - М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. - 318 с.

ПЗУ

постоянное запоминающее устройство

комп.

Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. - М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. - 318 с., С. Фадеев. Словарь сокращений современного русского языка. - С.-Пб.: Политехника, 1997. - 527 с.

ПЗУ

пускозарядное устройство;
пускозаряжающая установка;
пускозаряжающее устройство

Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. - М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. - 318 с., С. Фадеев. Словарь сокращений современного русского языка. - С.-Пб.: Политехника, 1997. - 527 с.

пароэнергетическая установка

морск., энерг.

на корабле

ПЗУ

переносное заземляющее устройство

в маркировке

ПЗУ

патрон защитный универсальный

безопасность

ПЗУ

планировка земельного участка

ПЗУ

пробозаборное устройство

Источник: http://www.cntd.ru/assets/files/upload/201212/%D0%A0%D0%9C%D0%93%20109-2011.pdf)

ПЗУ

птицезащитное устройство

в маркировке

ПЗУ

производственный заготовительный участок

произв.

ПЗУ

переговорно-замочное устройство

ПЗУ

придомовый земельный участок

Источник: http://www.kyrgyzinfo.kg/?art=1126262696


Словарь сокращений и аббревиатур . Академик . 2015 .

Синонимы :

Смотреть что такое "ПЗУ" в других словарях:

    пзу - [пэзэу], неизм.; ср. [прописными буквами] Буквенное сокращение: постоянное запоминающее устройство (в компьютере: устройство для постоянного хранения основных данных). Объём, ёмкость ПЗУ. ПЗУ в сколько то мегабайт … Энциклопедический словарь

    ПЗУ - (сокр. от постоянное запоминающее устройство), ИНТЕГРАЛЬНЫЕ СХЕМЫ (микросхемы), служащие постоянным хранилищем ДАННЫХ (информации), необходимых КОМПЬЮТЕРУ. Содержимое микросхем обычного ПЗУ задается производителем и не может изменяться… … Научно-технический энциклопедический словарь

    ПЗУ - Постоянное Запоминающее Устройство ПЗУ Пуско Зарядное устройство … Википедия

    пзу - сущ., кол во синонимов: 1 устройство (117) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    ПЗУ - [пэзэ у], нескл., ср. (сокр.: программное запоминающее устройство) … Русский орфографический словарь

    ПЗУ - абревіатура Партія зелених України незмінювана словникова одиниця … Орфографічний словник української мови

    ПЗУ - Постоянно запоминающее устройство. Произносится [пэ зэ у] … Словарь трудностей произношения и ударения в современном русском языке

    ПЗУ - (пэзэу/) неизм. ср. Буквенное сокращение: постоянное запоминающее устройство (в компьютере: устройство для постоянного хранения основных данных) Объём, ёмкость ПЗУ. ПЗУ в сколько то мегабайт … Словарь многих выражений

    Пзу - см. постоянное запоминающее устройство … Краткий толковый словарь по полиграфии

    ПЗУ - компьют. постоянное запоминающее устройство … Универсальный дополнительный практический толковый словарь И. Мостицкого

Книги

  • , В. К. Конопелько, В. А. Липницкий. В настоящей книге изложены основы теории норм синдромов - теории инвариантов циклической и циклотомической групп автоморфизмов классических помехоустойчивых кодов. Обнаружены глубокие… Купить за 538 грн (только Украина)
  • Теория норм синдромов и перестановочное декодирование помехоустойчивых кодов , Конопелько В.К.. В настоящей книге изложены основы теории норм синдромов - теории инвариантов циклической и циклотомической групп автоморфизмов классических помехоустойчивых кодов. Обнаружены глубокие…

План земельного участка в законодательстве именуется СПОЗУ схема планировочной организации земельного участка . ПЗУ (СПОЗУ) – документ, который вместе с заявлением о получении разрешения на строительство необходимо предоставить собственнику или арендатору этого участка для того, чтобы начать проектирование и проводить дальнейшие строительные работы. ПЗУ предоставляется в настоящее время вместо генерального плана застройки земельного участка, который требовался ранее (http://ppt.ru/kodeks.phtml?kodeks=5&paper=51).

Требования к составлению ПЗУ

Выполняется ПЗУ по данным топографической съемки, где указываются расположение границ земельного участка и основные данные по проектируемым и существующим на момент составления плана объекты. Кроме того, на схеме в обязательном порядке обозначаются следующее:

  • Проектируемые объекты
  • Существующие капитальные постройки
  • Подъезды и подходы к объектам
  • Подземные коммуникации

Проектируемые объекты привязываются к уже существующим на участке с соблюдением расстояний, предусмотренных требованиями санитарных и противопожарных норм. Схема не должна входить в противоречие с общим градостроительным планом участка и прочими регулирующими документами.

На основании положений, определенных в Постановлении правительства РФ № 87 от 16.02.2008 г. (http://base.consultant.ru/cons/cgi/online.cgi?req=doc;base=LAW раздел 2 в ред. от 13.04.2010 г.) СПОЗУ должна включать набор обязательных элементов:

  • номер ГПЗУ,
  • площадь участка,
  • расчет процента застройки,
  • показатели строения – состав, общая площадь, этажность и высота,
  • характеристика ограждения участка,
  • и условные обозначения, использованные при составлении схемы (легенда).

План земельного участка для индивидуального жилищного строительства состоит из графической и текстовой частей. В текстовой части отражается следующая информация:

  • Описание участка, предназначенного для строительства и показатели капитальных объектов;
  • обоснование санитарных разрывов в привязке к границам земельного участка и существующим и планируемым объектам;
  • соответствие плана организации участка существующим регламентам или заменяющим их документам об его использовании;
  • примерный порядок благоустройства.

Графическая часть ПЗУ выполняется в произвольной форме, без учета особых чертежных требований, но в обязательном порядке отображает:

  • размещение существующих объектов и предполагаемых к строительству объектов с проходами и подъездами;
  • зоны действия публичных сервитутов, если таковые имеются;
  • расположение санитарных разрывов и охранных зон;
  • зоны участка и прилегающей территории, подлежащие благоустройству.

При составлении плана земельного участка в графической части не требуется указывать следующие элементы – ливневые стоки, разрезы строения, схемы фасадов и въезды на участок. Следует учитывать, что при предоставлении ПЗУ могут возникнуть дополнительные требования к нему, зависящие от местных ситуационных обстоятельств. Однако никакие дополнительные требования не могут выходить за рамки, определенные в ч. 5-11, ст. 51 Градостроительного

Пример раздела проекта ПЗУ - планировочной организации земельного участка для многоквартирного жилого дома.

Схема планировочной организации земельного участка Раздел ПЗУ.

ПЕРЕЧЕНЬ ЧЕРТЕЖЕЙ РАЗДЕЛА ПЗУ

1. ПЗУ-1 Ситуационный план. М1:5000;

2. ПЗУ-2 Схема планировочной организации земельного участка. М1:500;

3. ПЗУ-3 Планово-высотные привязки жилых домов. М1:500;

4. ПЗУ-4 План организации рельефа. М1:500;

5. ПЗУ-5 План земляных масс. М1:500;

6. ПЗУ-6 План благоустройства территории. М1:500.

Пояснительная записка раздел пзу жилой многоквартирный

1.1 Характеристика земельного участка.

Площадка строительства расположена по адресу: г.Ульяновск, Засвияжский район, 5 квартал жилого микрорайона Запад-1 комплекса «Симбирское кольцо» и ограничена:

С запада - территорией детского сада и шоссе А-151 с выездом на Московское шоссе,

С востока - жилыми домами на этапе строительства и ул. Генерала Мельникова,

С юга - жилой застройкой и Александровским парком.

На площадке строительства имеются сооружения ТП и РП, сохраняемых на начало строительства. Инженерные коммуникации выносятся.

Рельеф площадки в основном ровный с перепадом отметок 111.30-110.00 м.абс. Топографический план масштаба 1:500 выполнен ООО «Советникъ» в 2014 году.

Согласно инженерно-геологическим изысканиям, выполненным в 2013г. ЗАО «УльяновскТИСИЗ», площадка с поверхности имеет непригодный слой почвенно-растительного грунта мощностью 0.4м, подлежащего срезки и дальнейшему использованию для устройства проектируемых участков газонов, далее представлены суглинки твердые, туго- и мягкопластичные мощностью 2.0-4.2м. Далее по разрезу залегают пески различной крупности.

Грунтовые воды вскрыты на глубине от 6,5 до 7.2м от поверхности земли, на абсолютных отметках 102.85-104.2м.

1.2 Обоснование границ санитарно-защитных зон.

Проектируемые жилые дома размещены в жилой застройке, складские и промышленные объекты в радиусе до 500м отсутствуют.

1.3 Обоснование планировочной организации земельного участка.

Проектируемые жилые дома номер 24 и 25 9-ти этажной застройки (на 3 и 7 подъездов) ориентированы фасадами с северо-восточной стороны границы участка - на ул.Камышинскую, с юго-западной - на проезд без названия, а на дворовой территории расположены трансформаторная подстанция, газoрегуляторная подстанция (существующие), площадки отдыха для детей и взрослых, площадка для занятий физкультурой.

1.4 Инженерная подготовка территории.

Основным мероприятием по инженерной подготовке территории является:

Территория спланирована в отметках, близких к существующим, что обусловлено ранее запроектированными участками жилых домов и детского сада. Имеются выемки от 0.10 до 0.50м.

В соответствии с Заключением об инженерно-экологических изысканиях, выполненных ООО «Симбирскизыскания» 2012г. исследованные пробы почвы на проектируемой площадке в части санитарно-эпидемиологических требований к качеству почвы относятся к категории «Чистая».

1.5 Организация рельефа.

Вертикальная планировка территории решена в основном в небольших насыпях высотой 0.1-0.5м, и выемках до 0.5м (насыпной грунт).

Основные земляные работы на площадке:

  • устройство корыта под автопроезды, тротуары, озеленение,
  • разработка выемок,
  • устройство насыпи.

При этом для организации насыпи проектом намечается использование грунта из выемок, из корыта автопроездов, тротуаров и озеленения с перемещением в насыпь с коэффициентом уплотнения до 0.95м, а под проездами с асфальтобетонным покрытием - с коэффициентом уплотнения 0.98.

Водоотвод на площадке решен посредством ливневой канализации с дождеприемными колодцами.

1.6 Благоустройство площадки и автопроезды.

Автопроезды на площадке размещены с учетом требований «Федерального закона. Технический регламент о требованиях пожарной безопасности» статья 67 п.п. 24 и 25 на расстоянии 8м от здания и шириной не менее 6.0м.

Автопроезды запроектированы городского профиля с бордюрными камнями, ширина проезжей части от 6м до 7м. Тротуары предусмотрены шириной 1.5-3.0м. Конструкции автопроездов и тротуаров проектируются с асфальтобетонным покрытием и приведены на чертеже «План благоустройства территории».

Вся свободная от застройки и транспортных коммуникаций территория полностью озеленяется с организацией газонов и посадкой кустарника в группы.

Проектом благоустройства территории предусмотрено также строительство площадок отдыха в требуемом (расчетном) объеме: для взрослого населения 100м2 и «для игр детей» -400м2, площадка для занятий физкультурой - 1100м2, площадка для выгула собак - в условной границе соседнего дома. Для спортивных занятий проектом предусматривается устройство площадки для мини-футбола с покрытием из неводостойкой спецсмеси. В соответствии со СНИП 2.07.01-89* минимальная площадь площадок отдыха составляет:

Площадка для отдыха взрослого населения

1035х0.1=104м2

Площадка для игр детей

1035х0.4=414м2

Площадка для занятий физкультурой

1035х0.5=517м2

Где 1035 - численность населения в жилых домах 24,25,

0.1;0.4 - нормативные показатели на 1 жителя.

Хозяйственная площадка (для мусоросборника) размещена между домами с наружной стороны по периметру проектируемого участка, с учетом санитарного разрыва в 15м от окон жилых домов и от площадок отдыха.

1.8 Транспорт.

Подъезд автомобильного транспорта на площадку проектирования предусматривается с ул. Камышинской. Ширина проезжей части от 6м до 7м.

На дворовой и по периметру площадки проектом предусматривается строительство открытых стоянок автомашин с асфальтобетонным покрытием, общих для всех 4-х домов. Общее кол-во составляет 180 м/мест.

Минимальное количество машиномест на стоянке рассчитано по СНиП 2.07.01-89*:

N = (1035x350/1000) = 362м/мест, где

N- количество машиномест;

1035 - численность жильцов домов 24-25;

350- уровень автомобилизации на 1000 жителей;

Таким образом, на площадке обеспечено требуемое временное хранение 25% ед. автомобилей, т.е 91ед., также возможность хранения личного транспорта жильцам домов обеспечена в сущ. гаражах удаленностью до 800м.

Для парковки транспорта маломобильных групп населения проектом намечается организация 2-х машиномест на дворовой территории.