Первичные измерительные преобразователи ип параметрического типа. Параметрические измерительные преобразователи неэлектрических величин. Параметрические измерительные преобразователи

Измерительные преобразователи неэлектрических величин делятся на параметрические и генераторные. В параметрических преобразователях выходной величиной является приращение параметра электрической цепи (R, L, М, С ), поэтому при их использовании необходим дополнительный источник питания.

В генераторных преобразователях выходной величиной являются ЭДС, ток или заряд которых функционально связанные с измеряемой неэлектрической величиной.

При создании измерительных преобразователей неэлектрических величин стремятся получить линейную функцию преобразования. Отличие реальной градуировочной характеристики от номинальной линейной функции преобразования обусловливает погрешность нелинейности, являющуюся одной из главных составляющих результирующей погрешности при измерениях неэлектрических величин. Одним из способов снижения погрешности нелинейности является выбор в качестве входных и выходных величин преобразователя таких величин, взаимосвязь которых ближе к линейной функции. Так, например, при измерении линейных перемещений с помощью емкостного преобразователя может изменяться либо зазор между пластинами, либо площадь их перекрытия. При этом функции преобразования оказываются различными. При изменении зазора зависимость емкости от перемещения подвижной пластины существенно нелинейная, она описывается гиперболической функцией. Однако, если в качестве выходной величины преобразователя использовать не его емкость, а сопротивление на некоторой частоте, то измеряемое перемещение и указанное емкостное сопротивление оказываются связанными линейной зависимостью.

Другим эффективным способом уменьшения погрешности нелинейности параметрических измерительных преобразователей является их дифференциальное построение. Любой дифференциальный измерительный преобразователь фактически представляет собой два аналогичных измерительных преобразователя, выходные величины которых вычитаются, а входная величина воздействует на эти преобразователи противоположным образом.

Структурная схема прибора с дифференциальным измерительным преобразователем приведена на рисунке 16.1.

Измеряемая величина х воздействует на два аналогичных измерительных преобразователя ИП1 и ИП2 , причем соответствующие приращения значений выходных величин у 1 и у 2 имеют противоположные знаки. Кроме того, есть некоторое постоянное начальное значение x 0 величины

на входах этих преобразователей, определяемое обычно конструктивными параметрами преобразователей. Выходные величины у 1 и у 2 вычитаются, а их разность у 3 измеряется электроизмерительным устройством ЭИУ (аналоговым или цифровым).

Предположим, что преобразователи ИП1 и ИП2 идентичны, а их функции преобразования достаточно точно описываются алгебраическим полиномом второго порядка. В этом случае значения у 1 и у 2 на выходах преобразователей можно записать виде (16.1) /14/

После вычитания получим (16.2) /14/

Рисунок 16.1 - Структурная схема диф- Рисунок 16.2 - Реостатные из- ференциального измерительного пре- мерительные преобразователи

образователя

Отсюда видно, что результирующая функция преобразования y 3 = f(х) оказалась линейной. Так как у 3 не зависит от а 0 , то происходит компенсация систематических аддитивных погрешностей измерительных преобразователей. Кроме того, по сравнению с одним преобразователем практически вдвое возрастает чувствительность. Все это определяет широкое применение дифференциальных измерительных преобразователей в практике.

Рассмотрим кратко основные типы используемых параметрических преобразователей неэлектрических величин.

Общие сведения.

В параметрических преобразователях выходной величиной является параметр электрической цепи . При использовании параметрических преобразователей необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

Реостатные преобразователи.

Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины - перемещения. Реостатный преобразователь представляет собой реостат, щетка (подвижный контакт) которого перемещается под воздействием измеряемой неэлектрической величины. На рис. 11-5 схематически показаны некоторые варианты конструкций реостатных преобразователей для углового (рис. 11-5, а) и линейного (рис. 11-5, б и в) перемещений. Преобразователь состоит из обмотки, нанесенной на каркас, и щетки. Для изготовления каркасов применяются диэлектрики и металлы. Проволоку для обмотки выполняют из сплавов (сплав платины с иридием, константан, нихром и фехраль). Для обмотки обычно используют изолированный провод. После изготовления обмотки изоляцию провода счищают в местах соприкосновения его со щеткой. Щетку преобразователя выполняют либо из проволок, либо из плоских пружинящих полосок, причем

Рис. 11-5. Реостатные преобразователи для угловых (а), линейных (б) перемещений и для функционального преобразования линейных перемещений (в)

используют как чистые металлы (платина, серебро), так и сплавы (платина с иридием, фосфористая бронза и т. д.).

Габариты преобразователя определяются значением измеряемого перемещения, сопротивлением обмотки и мощностью, выделяемой в обмотке.

Для получения нелинейной функции преобразования применяют функциональные реостатные преобразователи. Нужный характер преобразования часто достигается профилированием каркаса преобразователя (рис. 11-5, в).

В рассматриваемых реостатных преобразователях статическая характеристика преобразования имеет ступенчатый характер, так как сопротивление изменяется скачками, равными сопротивлению одного витка. Это вызывает погрешность, максимальное значение которой где максимальное сопротивление одного витка; - полное сопротивление преобразователя. Иногда применяют реохордные преобразователи, в которых щетка скользит вдоль оси проволоки. У этих преобразователей отсутствует указанная погрешность. Реостатные преобразователи включают в измерительные цепи в виде равновесных и неравновесных мостов, делителей напряжения и т.

К достоинствам преобразователей относится возможность получения высокой точности преобразования, значительных по уровню выходных сигналов и относительная простота конструкции. Недостатки - наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения.

Применяют реостатные преобразователи для преобразования сравнительно больших перемещений и других неэлектрических величин (усилия, давления и т. п.), которые могут быть преобразованы в перемещение.

Тензочувствительные преобразователи (тензорезисторы).

В основу работы преобразователей положен тензоэффект, заключающийся в изменении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Рис. 11-6. Тензочувствительный проволочный преобразователь

Если проволоку подвергнуть механическому воздействию, например растяжению, то сопротивление ее изменится. Относительное изменение сопротивления проволоки где - коэффициент тензочувствительности; - относительная деформация проволоки.

Изменение сопротивления проволоки при механическом воздействии на нее объясняется изменением геометрических размеров (длины, диаметра) и удельного сопротивления материала.

Тензочувствительные преобразователи, широко применяемые в настоящее время (рис. 11-6), представляют собой тонкую зигзагообразно уложенную и приклеенную к полоске бумаги (подложке проволоку 2 (проволочную решетку). Преобразователь включают в цепь с помощью привариваемых или припаиваемых выводов 3. Преобразователь наклеивают на поверхность исследуемой детали так, чтобы направление ожидаемой деформации совпадало с продольной осью проволочной решетки.

Для изготовления преобразователей применяют главным образом константановую проволоку диаметром мм Константан обладает малым температурным коэффициентом электрического сопротивления, что очень важно, так как изменение сопротивления преобразователей при деформациях, например, стальных деталей соизмеримо с изменением сопротивления преобразователя при изменении температуры. В качестве подложки используют тонкую мм) бумагу, а также пленку лака или клея, а при высоких температурах - слой цемента.

Применяют также фольговые преобразователи, у которых вместо проволоки используется фольга и пленочные тензорезисторы, получаемые путем возгонки тензочувствительного материала с последующим осаждением его на подложку.

Для наклеивания проволоки на подложку и всего преобразователя на деталь применяют клеи (раствор целлулоида в ацетоне, клей бакелитовый и т. д.). Для высоких температур (выше используют жаростойкие цементы, кремнийорганические лаки и клеи и т. п.

Преобразователи выполняют различных размеров в зависимости от назначения. Наиболее часто используют преобразователи с длиной решетки (базой) от 5 до 50 мм, имеющие сопротивление 30-500 Ом.

Изменение температуры вызывает изменение характеристики преобразования тензорезисторов, что объясняется температурной зависимостью сопротивления преобразователя и различием температурных коэффициентов линейного расширения материала тензорезистора и исследуемой детали. Влияние температуры устраняется обычно путем применения соответствующих методов температурной компенсации.

Наклеенный тензочувствительный преобразователь невозможно снять с одной детали и наклеить на другую. Поэтому для определения характеристик преобразования (коэффициента прибегают к выборочной градуировке преобразователей, что дает значение коэффициента с погрешностью Методы определения характеристик тензорезисторов регламентированы стандартом. Достоинства этих преобразователей - линейность статической характеристики преобразования, малые габариты и масса, простота конструкции. Недостатком их является малая чувствительность.

В тех случаях когда требуется высокая чувствительность, находят применение тензочувствительные преобразователи, выполненные в виде полосок из полупроводникового материала. Коэффициент таких преобразователей достигает нескольких сотен. Однако воспроизводимость характеристик полупроводниковых преобразователей плохая. В настоящее время серийно выпускают интегральные полупроводниковые тензорезисторы, образующие мост или полумост с элементами термокомпенсации.

В качестве измерительных цепей для тензорезисторов используют равновесные и неравновесные мосты. Тензорезисторы применяют для измерения деформаций и других неэлектрических величин: усилий, давлений, моментов и т. п.

Термочувствительные преобразователи (терморезисторы).

Принцип действия преобразователей основан на зависимости электрического сопротивления проводников или полупроводников от температуры.

Между терморезистором и исследуемой средой в процессе измерения происходит теплообмен. Так как терморезистор при этом включен в электрическую цепь, с помощью которой производят измерение его сопротивления, то по нему протекает ток, выделяющий в нем теплоту. Теплообмен терморезистора со средой происходит из-за теплопроводности среды и конвекции в ней, теплопроводности самого терморезистора и арматуры, к которой он крепится, и, наконец, из-за излучения. Интенсивность

Рис. 11-7. Устройство (а) и внешний вид арматуры (б) платинового терморезистора

теплообмена, а следовательно, и температура терморезистора зависят от его геометрических размеров и формы, от конструкции защитной арматуры, от состава, плотности, теплопроводности, вязкости и других физических свойств газовой или жидкой среды, окружающей терморезистор, а также от температуры и скорости перемещения среды.

Таким образом, зависимость температуры, а следовательно, и сопротивления терморезистора от перечисленных выше факторов может быть использована для измерения различных неэлектрических величин, характеризующих газовую или жидкую среду. При конструировании преобразователя стремятся к тому, чтобы теплообмен терморезистора со средой в основном определялся измеряемой неэлектрической величиной.

По режиму работы терморезисторы бывают перегревные и без преднамеренного перегрева. В преобразователях без перегрева ток, проходящий через терморезистор, практически не вызывает перегрева, и температуру последнего определяет температура среды; эти преобразователи применяют для измерения температуры. В перегревных преобразователях электрический ток вызывает перегрев, зависящий от свойств среды. Перегревные преобразователи используют для измерения скорости, плотности, состава среды и т. д. Так как на перегревные терморезисторы влияет температура среды, обычно применяют схемные методы компенсации этого влияния.

Для измерения температуры наиболее распространены терморезисторы, выполненные из платиновой или медной проволоки.

Стандартные платиновые терморезисторы применяют для измерения температуры в диапазоне от -260 до медные - в диапазоне от -200 до +200 °С (ГОСТ 6651-78).

Низкотемпературные платиновые терморезисторы (ГОСТ 12877-76) применяют для измерения температуры в пределах от -261 до

На рис. 11-7, а показано устройство платинового терморезистора. В каналах керамической трубки 2 расположены две (или четыре) секции спирали 3 из платиновой проволоки, соединенные между собой последовательно. К концам спирали припаивают выводы используемые для включения терморезистора в измерительную цепь. Крепление выводов и герметизацию керамической трубки производят глазурью Каналы трубки засыпают порошком безводного оксида алюминия, выполняющим роль изолятора и фиксатора спирали. Порошок безводного оксида алюминия, имеющий высокую теплопроводность и малую теплоемкость, обеспечивает хорошую передачу теплоты и малую инерционность терморезистора. Для защиты терморезистора от механических и химических воздействий внешней среды его помещают в защитную арматуру (рис. 11-7, б) из нержавеющей стали.

Начальные сопротивления (при платиновых стандартных терморезисторов равны 1, 5, 10, 46, 50, 100 и 500 Ом, медных и 100 Ом.

Допустимое значение тока, протекающего по терморезистору при включении его в измерительную цепь, должно быть таким, чтобы изменение сопротивления терморезистора при нагреве не превышало начального сопротивления.

Статические характеристики преобразования в виде таблиц (градуировочных) и допускаемые отклонения этих характеристик для стандартных терморезисторов приведены в ГОСТ 6651-78.

Аналитически зависимость сопротивления от температуры для платиновых терморезисторов выражают следующими уравнениями:

где - сопротивление при

Для медного терморезистора

Помимо платины и меди, иногда для изготовления терморезисторов используют никель.

Для измерения температуры применяют также полупроводниковые терморезисторы (термисторы) различных типов, которые характеризуются большей чувствительностью (ТКС

термисторов отрицательный и при в 10-15 раз превышает меди и платины) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов - плохая воспроизводимость и нелинейность характеристики преобразования:

где и - сопротивления термистора при температурах Т и То - начальная температура рабочего диапазона; В - коэффициент.

Термисторы используют в диапазоне температур от -60 до

Для измерения температуры от -80 до применяют термодиоды и термотранзисторы, у которых под действием температуры изменяется сопротивление р-п-перехода и падение напряжения на этом переходе. Чувствительность термотранзистора по напряжению что значительно превышает чувствительность стандартных термопар (см. табл. 11-1). Эти преобразователи обычно включают в мостовые цепи и цепи в виде делителей напряжения.

Достоинствами термодиодов и термотранзисторов являются высокая чувствительность, малые размеры и малая инерционность, высокая надежность и дешевизна; недостатками - узкий температурный диапазон и плохая воспроизводимость статической характеристики преобразования. Влияние последнего недостатка уменьшают применением специальных цепей.

Тепловую инерционность стандартных терморезисторов согласно ГОСТ 6651-78 характеризуют показателем тепловой инерции определяемым как время, необходимое для того, чтобы при внесении преобразователя в среду с постоянной температурой разность температур среды и любой точки внесенного в нее преобразователя стала равной 0,37 того значения, которое она имела в момент наступления регулярного теплового режима. Показатель тепловой инерции определяют по той части кривой переходного теплового процесса преобразователя, которая соответствует регулярному режиму, т. е. имеет экспоненциальный характер (в полулогарифмическом масштабе - прямая линия). Значение для различных типов стандартных преобразователей находится в пределах от нескольких десятков секунд до нескольких минут.

Когда необходимы малоинерционные терморезисторы, для их изготовления используют очень тонкий провод (микропровод) или применяют термисторы малого объема (бусинковые) или термотранзисторы.

Рис. 11-8. Преобразователь газоанализатора, основанный на принципе измерения теплопроводности

Рис. 11-9. Зависимость теплопроводности газа от давления

Терморезисторы применяют в приборах для анализа газовых смесей. Многие газовые смеси отличаются друг от друга и от воздуха теплопроводностью. Теплопроводность смеси, состоящей из двух газов, не вступающих в реакцию друг с другом, где а- процентное содержание первого (искомого) компонента; теплопроводность, соответственно, первого и второго компонентов. Таким образом, измеряя теплопроводность газовой смеси можно судить о процентном содержании искомого компонента (при

В приборах для газового анализа - газоанализаторах - для измерения теплопроводности используют перегревный платиновый терморезистор 1 (рис. 11-8), помещенный в камеру 2 с анализируемым газом. Конструкция терморезистора, арматуры и камеры, а также значение нагревающего тока выбирают такими, чтобы теплообмен со средой осуществлялся в основном за счет теплопроводности газозой среды.

Для исключения влияния внешней температуры, кроме рабочей, используют компенсационную камеру с терморезистором, заполненную постоянным по составу газом. Обе камеры выполняют в виде единого блока, что обеспечивает камерам одинаковые температурные условия. Рабочий и компенсационный терморезисторы при измерениях включают в соседние плечи моста, что приводит к компенсации влияния температуры.

Терморезисторы применяют в приборах для измерения степени разреженности. На рис. 11-9 показана зависимость теплопроводности газа, находящегося между телами Л и Б, от его давления. Характер этой зависимости объясняют следующим образом.

Теплопроводность газа где - коэффициент пропорциональности; плотность газа; средняя длина пути свободного пробега молекул. В свою очередь, где и кг - коэффициенты пропорциональности; число молекул в единице объема. Следовательно, при давлениях Газа, близких к атмосферному,

При разрежении газа, когда длина пути свободного пробега молекул теоретически станет равной расстоянию между телами Ли Б или больше него, практически длина пути свободного пробега молекул будет ограничена расстоянием т. е. в этом случае и теплопроводность газа

Таким образом, теплопроводность газа становится зависимой от числа молекул в единице объема, т. е. от давления (степени разреженности). Зависимость теплопроводности газа от давления используют в вакуумметрах - приборах для измерения степени разреженности.

Для измерения теплопроводности в вакуумметрах используют металлические (платиновые) и полупроводниковые терморезисторы, помещаемые в стеклянный или металлический баллон, который соединяют с контролируемой средой.

Терморезисторы применяют в приборах для измерения скорости газового потока - термоанемометрах. Установившаяся температура перегрезного терморезистора, помещенного на пути газового потока, зависит от скорости потока. В этом случае основным путем теплообмена терморезистора со средой будет конвекция (принудительная). Изменение сопротивления терморезистора вследствие уноса теплоты с его поверхности движущейся средой функционально связано со скоростью среды.

Конструкцию и тип терморезистора, арматуру и нагревающий терморезистор ток выбирают такими, чтобы были снижены или исключены все пути теплообмена, кроме конвективного.

Достоинствами термоанемометров являются высокая чувствительность и быстродействие. Эти приборы позволяют измерять скорости от 1 до 100-200 м/с при использовании измерительной цепи, с помощью которой температура терморезистора автоматически поддерживается почти неизменной.

Электролитические преобразователи.

Электролитические преобразователи основаны на зависимости электрического сопротивления раствора электролита от его концентрации. В основном их применяют для измерения концентраций растворов.

На рис. 11-10 для примера показаны графики зависимостей удельной электрической проводимости у некоторых растворов электролитов от концентрации с растворенного вещества. Из этого рисунка следует, что в определенном диапазоне изменения концентрации зависимость электрической проводимости от

Рис. 11-10. Зависимость удельной электрической проводимости растворов электролитов от концентрации растворенного вещества

Рис. 11-11. Лабораторный электролитический преобразователь

концентрации однозначна и может быть использована для определения с.

Преобразователь, применяемый в лабораторных условиях для измерения концентрации, представляет собой сосуд с двумя электродами (электролитическая ячейка) (рис. 11-11). Для промышленных непрерывных измерений преобразователи выполняют проточными, причем часто используют конструкции, в которых роль второго электрода играют стенки сосуда (металлические).

Электрическая проводимость растворов зависит от температуры. В первом приближении эту зависимость выражают уравнением где - электрическая проводимость при начальной температуре ; Р - температурный коэффициент электрической проводимости (для растворов кислот, оснований и солей

Таким образом, при использовании электролитических преобразователей необходимо устранять влияние температуры. Эту задачу решают путем стабилизации температуры раствора с помощью холодильника (нагревателя) или применения цепей температурной компенсации с медными терморезисторами, так как температурные коэффициенты проводимости меди и растворов электролитов имеют противоположные знаки.

При прохождении постоянного тока через преобразователь происходит электролиз раствора, что приводит к искажению результатов измерения. Поэтому измерения сопротивления раствора обычно проводят на переменном токе (700-1000 Гц), чаще всего с помощью мостовых цепей.

Индуктивные преобразователи.

Принцип действия преобразователей основан на зависимости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения,

Рис. 11-12. Магнитопровод с зазорами и двумя обмотками

геометрических размеров и магнитного состояния элементов их магнитной цепи.

Индуктивность обмотки, расположенной на магнитопроводе (рис. 11-12), где - магнитное сопротивление магнитопровода; - число витков обмотки.

Взаимная индуктивность двух обмоток, расположенных на том же магнитопроводе, где - число витков первой и второй обмоток.

Магнитное сопротивление определяется выражением

где - активная составляющая магнитного сопротивления (рассеиванием магнитного потока пренебрегаем); - соответственно длина, площадь поперечного сечения и относительная магнитная проницаемость участка магнитопровода; - магнитная постоянная; - длина воздушного зазора; 5 - площадь поперечного сечения воздушного участка магнитопровода; - реактивная составляющая магнитного сопротивления; Р - потери мощности в магнитопроводе, обусловленные вихревыми токами и гистерезисом; - угловая частота; Ф - магнитный поток в магнитопроводе.

Приведенные соотношения показывают, что индуктивность и взаимную индуктивность можно изменять, воздействуя на длину сечение воздушного участка магнитопровода на потери мощности в магнитопроводе и другими путями. Этого можно достичь, например, перемещением подвижного сердечника (якоря) 1 (рис. 11-12) относительно неподвижного 2, введением немагнитной металлической пластины 3 в воздушный зазор и т.

На рис. 11-13 схематически показаны различные типы индуктивных преобразователей. Индуктивный преобразователь (рис. 11 -13, а) с переменной длиной воздушного зазора характеризуется нелинейной зависимостью Такой преобразователь обычно применяют при перемещениях якоря на мм. Значительно меньшей чувствительностью, но линейной зависимостью отличаются преобразователи с переменным сечением воздушного зазора (рис. 11-13, б). Эти преобразователи используют при перемещениях до 10-15 мм.

Рис. 11-13. Индуктивные преобразователи с изменяющейся длиной зазора (а), с изменяющимся сечением зазора (б), дифференциальный (в), дифференциальный трансформаторный дифференциальный трансформаторный с разомкнутой магнитной цепью и магнитоупругий

Якорь в индуктивном преобразователе испытывает усилие (нежелательное) притяжения со стороны электромагнита

где - энергия магнитного поля; - индуктивность преобразователя; - ток, проходящий через обмотку преобразователя.

Широко распространены индуктивные дифференциальные преобразователи (рис. 11-13, в), в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов. Дифференциальные преобразователи в сочетании с соответствующей измерительной цепью (обычно мостовой) имеют более высокую чувствительность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов и сниженное результирующее усилие на якорь со стороны электромагнита, чем недифференциальные преобразователи.

На рис. 11-13, г показана схема включения дифференциального индуктивного преобразователя, у которого выходными величинами являются взаимные индуктивности. Такие преобразователи называют взаимно-индуктивными или трансформаторными. При питании первичной обмотки переменным током и при симметричном положении якоря относительно электромагнитов ЭДС на

Рис. 11-14. Устройство (а) и вид печатной обмотки (б) индуктосина

выходных зажимах равна нулю. При перемещении якоря на выходных зажимах появляется ЭДС.

Для преобразования сравнительно больших перемещений (до 50-100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рис. 11-13, (9).

Применяют трансформаторные преобразователи угла поворота, состоящие из неподвижного статора и подвижного ротора с обмотками. Обмотку статора питают переменным током. Поворот ротора вызывает изменение значения и фазы наводимой в его обмотке ЭДС. При повороте ротора на угол - число полюсов статора) фаза этой ЭДС изменяется на 180°. Такие преобразователи используют при измерении больших угловых перемещений.

Для измерения малых угловых перемещений используют индуктосины (рис. 11-14). Ротор 1 и статор индуктосина снабжают печатными обмотками 3, имеющими вид радиального растра. Принцип действия индуктосина аналогичен описанному выше. Нанесением обмоток печатным способом удается получить большое число полюсных шагов обмотки, что обеспечивает высокую чувствительность преобразователя к изменению угла поворота.

Если ферромагнитный сердечник преобразователя подвергать механическому воздействию то вследствие изменения магнитной проницаемости материала сердечника изменится магнитное сопротивление цепи, что повлечет за собой изменение индуктивности и взаимной индуктивности М обмоток. На этом принципе основаны магнитоупругие преобразователи (рис. 11-13, е).

Конструкция преобразователя определяется диапазоном измеряемого перемещения. Габариты преобразователя выбирают исходя из необходимой мощности выходного сигнала.

Для измерения выходного параметра индуктивных преобразователей наибольшее применение получили мостовые (равновесные и неравновесные) цепи, а также компенсационная (в автоматических приборах) цепь для дифференциальных трансформаторных преобразователей.

Индуктивные преобразователи используют для преобразования перемещения и других неэлектрических величин, которые

Рис. 11-15. Емкостные преобразователи с изменяющимся расстоянием между пластинами (а), дифференциальный (б), дифференциальный с переменной активной площадью пластин (в) и с изменяющейся диэлектрической проницаемостью среды между пластинами (г)

могут быть преобразованы в перемещение (усилие, давление, момент и т. д.).

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Недостаток их - обратное воздействие преобразователя на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Емкостные преобразователи.

Емкостные преобразователи основаны на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

Для двухобкладочного плоского конденсатора электрическая емкость где - электрическая постоянная; - относительная диэлектрическая проницаемость среды между обкладками; - активная площадь обкладок; - расстояние между обкладками. Из выражения для емкости видно, что преобразователь может быть построен с использованием зависимостей

На рис. 11-15 схематически показано устройство различных емкостных преобразователей. Преобразователь на рис. 11-15, а представляет собой конденсатор, одна пластина которого перемещается под действием измеряемой величины х относительно неподвижной пластины. Статическая характеристика преобразования нелинейна. Чувствительность преобразователя возрастает с уменьшением расстояния Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Малое рабочее перемещение пластин приводит к погрешности от изменения расстояния между пластинами при колебаниях температуры. Выбором размеров деталей преобразователя и материалов добиваются снижения этой погрешности.

В емкостных преобразователях возникает усилие (нежелательное) притяжения между пластинами

где - энергия электрического поля; - соответственно напряжение и емкость между пластинами.

Применяют также дифференциальные преобразователи (рис. 11-15, б), у которых имеется одна подвижная и две неподвижные пластины. При воздействии измеряемой величины этих преобразователей одновременно изменяются емкости На рис. 11-15, в показан дифференциальный емкостной преобразователь с переменной активной площадью пластин. Такой преобразователь используют для измерения сравнительно больших линейных (более 1 мм) и угловых перемещений. В этих преобразователях легко получить требуемую характеристику преобразования путем профилирования пластин.

Преобразователи с использованием зависимости применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков и т. п. Для примера (рис. 11-15, г) дано устройство преобразователя емкостного уровнемера. Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости, так как изменение уровня ведет к изменению средней диэлектрической проницаемости среды между электродами. Изменением конфигурации пластин можно получить желаемый характер зависимости показаний прибора от объема (массы) жидкости.

Для измерения выходного параметра емкостных преобразователей применяют мостовые цепи и цепи с использованием резонансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, способные реагировать на перемещения порядка 10-7 мм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков мегагерц), что вызвано желанием увеличить сигнал, попадающий в измерительный прибор, и необходимостью уменьшить шунтирующее действие сопротивления изоляции.

Рис. 11-16. Схема ионизационного преобразователя

Рис. 11-17. Вольт-амперная характеристика ионизационного преобразователя

включения и необходимость в специальных источниках питания повышенной частоты.

Ионизационные преобразователи.

Преобразователи основаны на явлении ионизации газа или люминесценции некоторых веществ под действием ионизирующего излучения.

Если камеру, содержащую газ, подвергнуть облучению, например, -лучами, то между электродами, включенными в электрическую цепь (рис. 11-16), потечет ток. Этот ток зависит от приложенного к электродам напряжения, от плотности и состава газовой среды, размера камеры и электродов, свойств и интенсивности ионизирующего излучения и т. д. Эти зависимости используют для измерения различных неэлектрических величин: плотности и состава газовой среды, геометрических размеров деталей и т. д.

В качестве ионизирующих агентов применяют и у-лучи радиоактивных веществ, значительно реже - рентгеновские лучи и нейтронное излучение.

Для измерения степени ионизации используют преобразователи - ионизационные камеры и ионизационные счетчики, действие которых соответствует различным участкам вольт-амперной характеристики газового промежутка между двумя электродами. На рис. 11-17 показана зависимость тока I в камере (рис. 11-16) с постоянным составом газа от приложенного напряжения и интенсивности излучения На участке Л характеристики ток увеличивается прямо пропорционально напряжению, затем рост его замедляется и на участке Б достигает насыщения. Это указывает на то, что все ионы, образующиеся в камере, достигают электродов. На участке Б ионизационный ток снова начинает расти, что вызывается вторичной ионизацией при ударениях первичных электронов и ионов о нейтральные молекулы. При дальнейшем увеличении напряжения (участок Г) ионизационный перестает зависеть от первоначальной ионизации и наступает

непрерывный разряд (участок Д), который уже не зависит от воздействия радиоактивного излучения.

Участки А и Б вольт-амперной характеристики описывают действие ионизационных камер, а участки Б и Г - ионизационных счетчиков. Кроме ионизационных камер и счетчиков, в качестве ионизационных преобразователей применяют сцинтилляционные (люминесцентные) счетчики. Принцип действия этих счетчиков основан на возникновении в некоторых веществах - фосфорах (активированные серебром сернистый цинк, сернистый кадмий и др.) - под действием радиоактивных излучений световых вспышек (сцинтилляций), которые в счетчиках регистрируются фотоумножителями. Яркость этих вспышек, а следовательно, и ток фотоумножителя определяются радиоактивным излучением.

Выбор типа ионизационного преобразователя зависит в значительной мере от ионизирующего излучения.

Альфа-лучи (ядра атома гелия) обладают большой ионизирующей способностью, но имеют малую проникающую способность. В твердых телах а-лучи поглощаются в очень тонких слоях (еди-ницы-десятки микрометров). Поэтому при использовании а-лучей а-излучатель помещают внутрь преобразователя.

Бета-лучи представляют собой поток электронов (позитронов); они обладают значительно меньшей ионизирующей способностью, чем а-лучи, но зато имеют более высокую проникающую способность. Длина пробега р-частиц в твердых телах достигает нескольких миллиметров. Поэтому -излучатель может располагаться как внутри, так и вне преобразователя.

Изменение расстояния между электродами, площади перекрытия электродов или положения источника радиоактивного -излучения относительно ионизационных камер или счетчиков сказывается на значении ионизационного тока. Поэтому указанные зависимости используют для измерения различных механических и геометрических величин.

Конструкции ионизационных камер и счетчиков разнообразны и зависят от вида излучения.

Для регистрации отдельных частиц, а также измерения небольших -излучений широко применяют так называемые газоразрядные счетчики, действие которых описывают участки В и Г вольт-амперной характеристики. Устройство газоразрядного счетчика показано на рис. 11-19. Счетчик состоит из металлического цилиндра 1, внутри которого натянута тонкая вольфрамовая проволока 2. Оба эти электрода помещены в стеклянный цилиндр 3 с инертным газом. При ионизации газа в цепи счетчика появляются импульсы тока, число которых подсчитывается.

В качестве источников и у-излучений обычно используют радиоактивные изотопы. Источники излучения, применяемые в измерительной технике, должны иметь значительный период полураспада и достаточную энергию излучения (кобальт-60, стронций-90, плутоний-239 и др.).

Основное достоинство приборов, использующих ионизирующие излучения, заключается в возможности бесконтактных измерений, что имеет большое значение, например, при измерениях в агрессивных или взрывоопасных средах, а также в средах, находящихся под большим давлением или имеющих высокую температуру. Основной недостаток этих приборов - необходимость применения биологической защиты при высокой активности источника излучения.


1. Каковы устройство, принцип работы и применение:

а) фотоэлектрических преобразователей;

Фотоэлектрическими называются такие преобразователи, у которых выходной сигнал изменяется в зависимости от светового потока, падающего на преобразователь. Фотоэлектрические преобразователи или, как мы будем их называть в дальнейшем, фотоэлементы делятся на три типа:

1)фотоэлементы с внешним фотоэффектом

Они представляют собой вакуумные или газонаполненные сферические стеклянные баллоны, на внутреннюю поверхность которых наносится слой фоточувствительного материала, образующий катод. Анод выполняется в виде кольца или сетки из никелевой проволоки. В затемненном состоянии через фотоэлемент проходит темновой ток, как следствие термоэлектронной эмиссии и утечки между электродами. При освещении фотокатод под влиянием фотонов света имитирует электроны. Если между анодом и катодом приложено напряжение, то эти электроны образуют электрический ток. При изменении освещенности фотоэлемента, включенного в электрическую цепь, изменяется соответственно фототок в этой цепи.

2)фотоэлементы с внутренним фотоэффектом

Они представляют собой однородную полупроводниковую пластину с контактами, например из селенида кадмия, которая под действием светового потока изменяет свое сопротивление. Внутренний фотоэффект заключается в появлении свободных электронов, выбитых квантами света из электронных орбит атомов, остающихся свободными внутри вещества. Появление свободных электронов в материале, например в полупроводнике, эквивалентно уменьшению электрического сопротивления. Фоторезисторы имеют высокую чувствительность и линейную вольт-амперную характеристику (ВАХ), т.е. их сопротивление не зависит от приложенного напряжения.

3)фотогальванические преобразователи.

Данные преобразователи представляют собой активные светочувствительные полупроводники, создающие при поглощении света вследствие фотоэффектов в запорном слое свободные электроны и ЭДС.

Фотодиод (ФД) может работать в двух режимах - фотодиодном и генераторном (вентильном). Фототранзистор - полупроводниковый приемник лучистой энергии с двумя и большим числом р - «-переходов, в которых совмещен фотодиод и усилитель фототока.

Фототранзисторы, как и фотодиоды, применяются для преобразования световых сигналов в электрические

б) емкостных преобразователей;

Емкостный преобразователь представляет собой конденсатор,емкость которого изменяется под действием измеряемой неэлек­трической величины. В качестве емкостного преобразователя широко используют плос­кий конденсатор, емкость которого можно выразить формулой C =e0eS/5, где е0- диэлектрическая постоянная воздуха (е0= 8,85 10"12Ф/м;е - относительная диэлектрическая проницаемость среды между обкладками конденсатора; S-площадь обкладки; 5-расстояние между обкладками)

Так как измеряемая неэлектрическая величина может быть функционально связана с любым из этих параметров, то устрой­ство емкостных преобразователей может быть самым различным в зависимости от области применения. Для измерения уровней жид­ких и сыпучих тел используют цилиндрические или плоские кон­денсаторы; для измерения малых перемещений, быстроизменяющихся сил и давлений - дифференциальные емкостные преоб­разователи с переменным зазором между обкладками. Рассмотрим принцип использования емкостных преобразователей для изме­рения различных неэлектрических величин.

в) тепловых преобразователей;

Тепловой преобразователь представляет собой проводник илиполупроводник с током, с большим температурным коэффици­ентом, находящийся в теплообмене с окружающей средой. Име­ется несколько путей теплообмена: конвекцией; теплопроводнос­тью среды; теплопроводностью самого проводника; излучением.

Интенсивность теплообмена проводника с окружающей сре­дой зависит от следующих факторов: скорости газовой или жид­кой среды; физических свойств среды (плотности, теплопровод­ности, вязкости); температуры среды; геометрических размеров проводника. Эту зависимость температуры проводника, а следова­тельно, и его сопротивления от перечисленных факторов можно

использовать для измерения различных неэлектрических величин,характеризующих газовую или жидкую среду: температуры, ско­рости, концентрации, плотности (вакуума).

г) ионизационных преобразователей;

Ионизационными преобразователями называют такие преобра­зователи, в которых измеряемая неэлектрическая величина функ­ционально связана с током электронной и ионной проводимости газовой среды. Поток электронов и ионов получается в ионизационных пре­образователях либо ионизацией газовой среды под воздействием того или иного ионизирующего агента, либо путем термоэлек­тронной эмиссии, либо путем бомбардировки молекул газовой среды электронами и т.д.

Обязательные элементы любого ионизационного преобразова­теля - источник и приемник излучений.

д) реостатных преобразователей;

Реостатный преобразователь представляет собой реостат, движок которого перемещается под действием измеряемой неэлектрической величины. На каркас из изоляционного ма­териала намотана с равномерным ша­гом проволока. Изоляция проволоки на верхней границе каркаса зачищает­ся, и по металлу скользит щетка. До­бавочная щетка скользит по токосъемному кольцу. Обе щетки изоли­рованы от приводного валика. Реостатные преобразователи вы­полняются как с проводом, намотан­ным на каркас, так и реохордного типа. В качестве материала провода применяют нихром, манганин, константан и др. В ответственных случаях, когда требования к износоустойчивости контактных поверхностей очень вели­ки или когда контактные давления очень малы, применяют сплавы платины с иридием, палладием и т.д. Провод реостата должен быть покрыт либо эмалью, либо слоем оксидов для изоляции соседних витков друг от друга. Движ­ки бывают из двух-трех проволочек (платина с иридием) с кон­тактным давлением 0,003...0,005 Н или пластинчатые (серебро, фосфористая бронза) с усилием 0,05...0,1 Н. Контактная поверх­ность намотанного провода полируется; ширина контактной по­верхности равна двум-трем диаметрам провода. Каркас реостат­ного преобразователя выполняется из текстолита, пластмассы или из алюминия, покрытого изоляционным лаком, или оксидной пленкой. Формы каркасов разнообразные. Реактивное сопротив­ление реостатных преобразователей очень мало и им обычно можно пренебречь на частотах звукового диапазона.

Реостатные преобразователи могут быть использованы для измерения виброускорений и виброперемещений с ограниченным частотным диапазоном.

е) тензорезисторных преобразователей;

Тензорезисторный преобразователь (тензорезистор) представляет собой проводник, изменяющий свое сопротивление при деформации растяжения или сжатия. Длина проводника / и площадь поперечного сечения S изменяются при его деформациях. Эти деформации кристаллической решетки приводят к изменению удельного сопротивления проводника р и, следовательно, к изменению полного сопротивления

Применение: для измерения деформаций и механических на­пряжений, а также других статических и динамических механи­ческих величин, которые пропорциональны деформации вспомогательного упругого элемента (пружины), например пути, ус­корения, силы, изгибающего или вращающего момента, дав­ления газа или жидкости и т.д. По этим измеряемым величинам можно определить производные величины, например массу (вес), степень заполнения резервуаров и т.д. Проволочные тензорезисторы на бумажной основе, а так­же фольговые и пленочные применяют для измерения относительных деформаций от 0,005... 0,02 до 1,5...2 %. Свободные проволочные тензорезисторы могут быть использованы для измерения деформаций до 6... 10 %. Тензорези­сторы практически безынерционны и применяются в диапазоне частот 0... 100 кГц.

ж) индуктивных преобразователей;

Индуктивные измерительные преобразователи предназначены для преобразования положения (перемещения) в электрический сигнал. Они являются наиболее компактными, помехоустойчивыми, надежными и экономичными измерительными преобразователями при решении задач автоматизации измерения линейных размеров в машино- и приборостроении.

Индуктивный преобразователь состоит из корпуса, в котором на направляющих качения размещен шпиндель, на переднем конце которого расположен измерительный наконечник, а на заднем – якорь. Направляющая защищена от внешних воздействий резиновым манжетом. Связанный со шпинделем якорь находится внутри закрепленной в корпусе катушки. В свою очередь обмотки катушки электрически связаны с кабелем, закрепленным в корпусе и защищенным от перегибов конической пружиной. На свободном конце кабеля имеется разъем, служащий для подключения преобразователя к вторичному прибору. Корпус и шпиндель выполнены из закаленной нержавеющей стали. Переходник, соединяющий якорь со шпинделем состоит из титанового сплава. Пружина, создающая измерительное усилие, отцентрирована, что исключает трение при движении шпинделя. Такая конструкция преобразователя обеспечивает снижение случайной погрешности и вариации показаний до уровня менее 0,1 мкм.

Индуктивные преобразователи широко применяют в основном для измерения линейных и угловых перемещений.

з) магнитоупругих преобразователей;

Магнитоупругие преобразователи являются разновидностью электромагнитных преобразователей. Они основаны на явлении изменения магнитной проницаемости μ ферромагнитных тел в зависимости от возникающих в них механических напряжений σ, связанных с воздействием на ферромагнитные тела механичес­ких сил Р (растягивающих, сжимающих, изгибающих, скручи­вающих). Изменение магнитной проницаемости ферромагнитного сердечника вызывает изменение магнитного сопротивления сер­дечника RM. Изменение же RM ведет к изменению индуктивности катушки L , находящейся на сердечнике. Таким образом, в магнитоупругом преобразователе имеем следующую цепь преобра­зований:

Р -> σ -> μ -> Rм -> L .

Магнитоупругие преобразователи могут иметь две обмотки (трансформаторного типа). Под действием силы вследствие изме­нения магнитной проницаемости изменяется взаимная индуктивность М между обмотками и наводимая ЭДС вторичной обмотки Е. Цепь преобразования в этом случае имеет вид

Р -> σ -> μ -> Rм -> М -> Е.

Эффект изменения магнитных свойств ферромагнитных мате­риалов под влиянием механических деформаций называют магнитоупругим эффектом.

Магнитоупругие преобразователи применяют:

Для измерения больших давлений (больше 10 Н/мм2 , или 100 кГ/см2), так как они непосредственно воспринимают давление и не нуждаются в дополнительных преобразователях;

Для измерения силы. В этом случае предел измерения прибора определяется площадью магнитоупругого преобразователя. Дан­ные преобразователи деформируются под действием силы очень незначительно. Так, при l = 50 мм, △l < 10 мкм они имеют высо­кую жесткость и собственную частоту до 20... 50 кГц. Допустимые напряжения в материале магнитоупругого преобразователя не дол­жны превышать 40 Н/мм2 .

и) электролитических преобразователей сопротивления;

Электролитические преобразователи относятся к типу электрохимических преобразователей. В общем случае электрохимический преобразователь представляет собой электролитическую ячей­ку, заполненную раствором с помещенными в нее электродами, служащими для включения преобразователя в измерительную цепь. Как элемент электрической цепи электролитическая ячейка мо­жет характеризоваться развиваемой ею ЭДС, падением напряжения от проходящего тока, сопротивлением, емкостью и индук­тивностью. Выделяя зависимость между этими электрическими параметрами и измеряемой неэлектрической величиной, а также подавляя действие других факторов, можно создать преобразователи для измерения состава и концентрации жидких и газообразных сред, давлений, перемещений, скорости, ускорения и других величин. Электрические параметры ячейки зависят от состава ра­створа и электродов, химических превращений в ячейке, темпе­ратуры, скорости перемещения раствора и др. Связи между электрическими параметрами электрохимических преобразователей и неэлектрическими величинами определяются законами электро­химии.

Принцип действия электролитических пре­образователей основан на зависимости сопротивления электро­литической ячейки от состава и концентрации электролита, а также от геометрических размеров ячейки. Сопротивление столба жид­кости электролитического преобразователя:

R = ρh/S = k/૪

где ૪= 1/ρ - удельная проводимость электролита; k - постоянная преобразователя, зависящая от соотношения его геометрических размеров, определяемая обычно экспериментально.

ЛЕКЦИЯ 15.
Генераторные измерительные преобразователи
В генераторных преобразователях выходной величиной является ЭДС или заряд, функционально связанные с измеряемой неэлектрической величиной.
Термоэлектрические преобразователи (термопары) .
Основаны на термоэлектрическом эффекте, возникающем в цепи термопары. Эти преобразователи применяются для измерения температуры. Принцип действия термопары поясняется рис. 15.1,а, где изображена термоэлектрическая цепь, составленная из двух разнородных проводников А и В . Точки 1 и 2 соединения проводников называются спаями термопары. Если температуры t спаев 1 и 2 одинаковы, то ток в термоэлектрической цепи отсутствует. Если же температура одного из спаев (например, спая 1) выше, чем температура спая 2, то в цепи возникает термоэлектродвижущая сила (ТЭДС) Е , зависящая от разности температур спаев
Е = f (t 1 – t 2 ). (15.1)
Если поддерживать температуру спая 2 постоянной, то
Е = f (t 1 ).
Эту зависимость используют для измерения температуры с помощью термопар. Для измерения ТЭДС электроизмерительный прибор включают в разрыв спая 2 (рис. 15.1, б). Спай 1 называют горячим (рабочим) спаем, а спай 2 – холодным (концы 2 и 2’ называют свободными концами).
Чтобы ТЭДС термопары однозначно определялась температурой горячего спая, необходимо температуру холодного спая поддерживать всегда одинаковой.
Для изготовления электродов термопар используют как чистые металлы, так и специальные сплавы стандартизованного состава. Градуировочные таблицы для стандартных термопар составлены при условии равенства температуры свободных концов 0 о С. На практике не всегда удается поддерживать эту температуру. В таких случаях в показания термопары вводят поправку на температуру свободных концов. Существуют схемы для автоматического введения поправок.
Конструктивно термопары выполняются в виде двух изолированных термоэлектродов с рабочим спаем, получаемым способом сварки, помещенных в защитную арматуру, предохраняющую термопару от внешних воздействий и повреждений. Рабочие концы термопары выведены в головку термопары, снабженную зажимами для включения термопары в электрическую цепь.
В табл. 15.1 приведены характеристики термопар, выпускаемых промышленностью. Для измерения высоких температур применяют термопары ПП, ПР и ВР. Термопары из благородных металлов используют при измерении с повышенной точностью.
В зависимости от конструкции, термопары могут иметь тепловую инерцию, характеризуемую постоянной времени от секунд до нескольких минут, что ограничивает возможность их применения для измерения быстроменяющихся температур.
Кроме включения измерительного прибора в спай термопары возможно включение прибора в «электрод», т.е. в разрыв одного из термоэлектродов (рис. 15.1, в). Такое включение, в соответствии с (15.1), позволяет измерять разность температур t 1 – t 2 . Например, может быть измерен перегрев обмоток трансформатора над температурой окружающей среды при его испытаниях. Для этого рабочий спай термопары заделывают в обмотку, а свободный спай оставляют при температуре окружающей среды.
Т а б л и ц а 15.1. Характеристики термопар
Обозначение
Диапазон применения, о С
Медь – копель
Хромель – копель
Хромель – алюмель
Платинородий (10% Rh ) – платина
Платинородий (30% Rh ) – платинородий (6% Rh )
Вольфрамрений (5% Re ) – вольфрамрений (20% Re )
Требование постоянства температуры свободных концов термопары вынуждает по возможности удалять их от места измерения. Для этой цели применяют так называемые удлиняющие или компенсационные провода КП, подключаемые к свободным концам термопары с соблюдением полярности (рис. 15.1,г). Компенсационные провода составляются из разнородных проводников, которые в интервале возможных колебаний температуры свободных концов развивают в паре между собой такую же ТЭДС, как и термопара. Поэтому, если места подключения компенсационных проводов находятся при температуре t 2 , а температура в месте подключения термопары к прибору t 0 , то ТЭДС термопары будет соответствовать ее градуировке при температуре свободных концов t 0 .
Максимальная развиваемая стандартными термопарами ТЭДС составляет от единиц до десятков милливольт.
Для измерения ТЭДС могут применяться магнитоэлектрические, электронные (аналоговые и цифровые) милливольтметры и потенциометры постоянного тока. При использовании милливольтметров магнитоэлектрической системы следует иметь в виду, что измеряемое милливольтметром напряжение на его зажимах
где I – ток в цепи термопары, а R V – сопротивление милливольтметра.
Так как источником тока в цепи является термопара, то
I = E / (R V + R ВН ),
где R ВН – сопротивление участка цепи внешнего по отношению к милливольтметру (т.е. электродов термопары и компенсационных проводов). Поэтому измеряемое милливольтметром напряжение будет равно
U = E / (1+ R ВН / R V ).
Таким образом, показания милливольтметра тем больше отличаются от ТЭДС термопары, чем больше отношение R BH / R V . Для уменьшения погрешности от влияния внешнего сопротивления милливольтметры, предназначенные для работы с термопарами (так называемые пирометрические милливольтметры) градуируются для конкретного типа термопар и при определенном номинальном значении R BH , указываемом на шкале прибора. Пирометрические милливольтметры серийно выпускаются классов точности от 0.5 до 2.0.
Входное сопротивление электронных милливольтметров очень велико, и влияние сопротивления R BH на показания пренебрежимо мало.
Пьезоэлектрические преобразователи .
Такие преобразователи основаны на использовании прямого пьезоэлектрического эффекта, заключающегося в появлении электрических зарядов на поверхности некоторых кристаллов (кварца, турмалина, сегнетовой соли и др.) под влиянием механических напряжений. Пьезоэлектрическим эффектом обладают также некоторые поляризованные керамические материалы (титанат бария, цирконат-титанат свинца).
Если из кристалла кварца вырезать пластинку в форме параллелепипеда с гранями, расположенными перпендикулярно оптической 0 z , механической 0 y и электрической 0 х осям кристалла (рис. 15.2), то при воздействии на пластинку усилия F х , направленного вдоль электрической оси, на гранях х появляются заряды
Q x = K п F x , (15.2)
где К п – пьезоэлектрический коэффициент (модуль).
При воздействии на пластину усилия F у вдоль механической оси, на тех же гранях х возникают заряды
Q y = K п F y a / b ,
где а и b – размеры граней пластины. Механическое воздействие на пластину вдоль оптической оси появления зарядов не вызывает.

Пьезоэлектрический эффект является знакопеременным; при изменении направления прилагаемого усилия знаки зарядов на поверхности граней меняются на противоположные. Материалы сохраняют свои пьезоэлектрические свойства только при температурах ниже точки Кюри.

Величина пьезоэлектрического коэффициента (модуля) К п и температура точки Кюри для кварца и распространенных керамических пьезоэлектриков приведены в табл. 15.2.
Изотовление преобразователей из пьезокерамики значительно проще, чем из монокристаллов. Керамические датчики производят по технологии, обычной для радиокерамических изделий – путем прессования или литья под давлением; на керамику наносятся электроды, к электродам привариваются выводы. Для поляризации керамические изделия помещают в сильное электрическое поле, после чего они приобретают свойства пьезоэлектриков.
Электродвижущая сила, возникающая на электродах пьезоэлектрического преобразователя, довольно значительна – единицы вольт. Однако, если сила, приложенная к преобразователю, постоянна, то измерить ЭДС трудно, поскольку заряд мал и быстро стекает через входное сопротивление вольтметра. Если же сила переменна и при этом период изменения силы много меньше постоянной времени разряда, определяемой емкостью преобразователя и сопротивлением утечки, то процесс утечки почти не влияет на выходное напряжение преобразователя. При изменении силы F по закону F = F m sin  t ЭДС также изменяется синусоидально.
Таким образом, измерение неэлектрических величин, которые могут быть преобразованы в переменную силу, действующую на пьезоэлектрический преобразователь, сводится к измерению переменного напряжения или ЭДС.
Т а б л и ц а 15.2. Параметры кварца и керамических пьезоэлектриков
Материал (марка)
Точка Кюри, о С
Титанат бария (ТБ-1)
Цирконат-титанат свинца (ЦТС-19)
70.0х10 -12
119.0х10 -12
Пьезоэлектрические измерительные преобразователи находят широкое применение для измерения параметров движения: линейного и вибрационного ускорения, удара, акустических сигналов.
Эквивалентная схема пьезоэлектрического преобразователя представлена на рис. 15.3,а) в виде генератора с внутренней емкостью С . Поскольку мощность такого пьезоэлемента чрезвычайно мала, то для измерения выходного напряжения необходимо применять приборы с большим входным сопротивлением (10 11 …10 15 Ом).

Для увеличения полезного сигнала пьезодатчики выполняются из нескольких, последовательно соединенных элементов.

Устройство пьезоэлектрического датчика для измерения вибрационного ускорения показано на рис. 15.3,б). Пьезоэлемент (обычно из пьезокерамики), нагруженный известной массой m , помещен в корпус 1 и через выводы 2 включен в цепь электронного милливольтметра V . Подставив в формулу для возникающего на гранях заряда выражение F = ma , где а – ускорение, и учтя (15.2), получим
U = K u a ,
где K u – коэффициент преобразования датчика по напряжению.

PAGE 6


EMBED Visio.Drawing.6

Основными элементами большинства применяемых средств измерений являются первичные измерительные преобразователи, назначение которых - преобразование измеряемой физической величины (входная величина) в сигнал измерительной информации (выходная величина), как правило, электрический, удобный для дальнейшей обработки.

Первичные преобразователи подразделяются на параметрические и генераторные. В параметрических преобразователях выходная величина представляет собой изменение какого-либо параметра электрической цепи {сопротивление, индуктивность, емкость и т.д.), в генераторных выходная величина - ЭДС, электрический ток или заряд, возникающие вследствие энергии измеряемой величины.

Существует большой класс измерительных преобразователей, у которых входными величинами являются давление, сила или крутящий момент. Как правило, в этих преобразователях входная величина воздействует на упругий элемент и вызывает его деформацию, которая затем преобразуется или в сигнал, воспринимаемый наблюдателями (механические показывающие приборы), или в электрический сигнал.

В значительной степени инерционные свойства преобразователя определяются частотой собственных колебаний упругого элемента: чем она выше, тем менее инерционным является преобразователь. Максимальное значение этих частот при использовании конструкционных сплавов составляет 50...100 кГц. Для изготовления упругих элементов особо точных преобразователей применяются кристаллические материалы (кварц, сапфир, кремний).

Резистивные преобразователи - это параметрические преобразователи, выходной величиной которых является изменение электрического сопротивления, которое может вызываться воздействием разнообразных по физической природе величин - механических, тепловых, световых, магнитных и др.

Потенциометрический преобразователь представляет собой реостат, движок которого перемешается под воздействием измеряемой величины (входная величина). Выходной величиной является сопротивление.



Потенциометрические преобразователи применяются для измерения положения регулирующих органов (линейных и угловых), в уровнемерах, в датчиках (например, давления) для измерения деформации упругого чувствительного элемента. Достоинство потенциометрических преобразователей - большой выходной сигнал, стабильность метрологических характеристик, высокая точность, незначительная температурная погрешность. Основной недостаток - узкий частотный диапазон (несколько десятков герц).

Работа тензорезисторов основана на изменении сопротивления проводников и полупроводников при их механической деформации (тензоэффект). Проволочный (или фольговый) тензорезистор представляет собой зигзагообразную изогнутую тонкую проволоку диаметром 0,02...0,05 мм или ленту из фольги толщиной 4...12 мкм (решетка), которая наклеивается на подложку из электроизоляционного материала. К концам решетки присоединяются выводные медные проводники. Преобразователи, будучи приклеенными к детали, воспринимают деформацию ее поверхностного слоя.

При измерениях деформаций и напряжений в деталях и конструкциях, как правило, отсутствует возможность градуировки измерительных каналов и погрешность измерений составляет 2...10 %. В случае применения тензорезисторов в первичных измерительных преобразователях погрешность может быть снижена до 0.5...1 % путем градуировки. Основной недостаток тензорезисторов данного типа - малый выходной сигнал.

Для измерений малых деформаций упругих чувствительных элементов измерительных преобразователей используются полупроводниковые тензорезисторы, выращенные непосредственно на упругом элементе, выполненном из кремния или сапфира.

При измерениях динамических деформаций с частотой до 5 кГц должны применяться проволочные или фольговые тензорезисторы с базой не более 10 мм, причем максимальная деформация для них не должна превышать 0,1 % (0,02 % для полупроводниковых).

Действие пьезоэлектрических преобразователей основано на возникновении электрических зарядов при деформации кристалла (прямой пьезоэффект).

Пьезоэлектрические преобразователи обеспечивают возможность измерения быстропеременных величин (собственная частота преобразователей достигает 200 кГц), отличаются высокой надежностью и имеют малые габаритные размеры и массу. Основной недостаток - трудность при измерении медленно изменяющихся величин и при проведении статической градуировки из-за утечек электричества с поверхности кристалла.

Электростатический преобразователь схематично можно представить в виде двух электродов (пластин) площадью F, параллельно расположенных на расстоянии d в среде с диэлектрической проницаемостью е.

Обычно эти преобразователи устроены таким образом, что их выходной величиной является изменение емкости (в этом случае они называются емкостными), а входными величинами могут быть механические перемещения, изменяющие зазор d или площадь F, или изменение диэлектрической проницаемости среды e вследствие изменения ее температуры, химического состава и т.п.

Кроме емкости, в качестве выходной величины электростатических преобразователей используется ЭДС. генерируемая при взаимном перемещении электродов, находящихся в электрическим поле (генераторный режим). Например, в генераторном режиме работают конденсаторные микрофоны, преобразующие энергию акустических колебаний в электрическую.

Достоинством электростатических преобразователей является отсутствие шумов и самонагрева. Однако с целью защиты от наводок соединительные линии и сами преобразователи должны тщательно экранироваться.

У индуктивных преобразователей выходной величиной является изменение индуктивности, а входными величинами могут быть перемещения отдельных частей преобразователя, приводящие к изменению сопротивления магнитной цепи, взаимоиндукции между контурами и т.д.

Достоинствами преобразователей являются: линейность характеристики, малая зависимость выходного сигнала от внешних воздействий, ударов и вибраций; высокая чувствительность. Недостатки - малый выходной сигнал и необходимость в питающем напряжении повышенной частоты.

Принцип действия вибрационно-частотных преобразователей основан на изменении частоты собственных колебаний струны или тонкой перемычки при изменении ее натяжения.

Входной величиной преобразователя является механическое усилие (или величины, преобразуемые в усилие. - давление, крутящий момент и др.). которое воспринимается упругим элементом, связанным с перемычкой.

Применение вибрационно-частотных преобразователей возможно при измерении постоянных или медленно изменяющихся во времени величин (частота не более 100...150 Гц). Они отличаются высокой точностью, а частотный сигнал - повышенной помехоустойчивостью.

В оптоэлектрических преобразователях используются закономерности распространения и взаимодействия с веществом электромагнитных волн оптического диапазона.

Основным элементом преобразователей являются приемники излучения. Простейшие из них - тепловые преобразователи - предназначены для преобразования всей падающей на них энергии излучения в температуру (интегральный преобразователь).

В качестве приемников излучения используются также различные фотоэлектрические преобразователи, в которых используется явление фотоэффекта. Фотоэлектрические преобразователи являются селективными, т.е. они обладают высокой чувствительностью в сравнительно узком диапазоне длин волн. Например, внешний фотоэффект (испускание электронов под действием света) используется в вакуумных и газонаполненных фотоэлементах и фотоумножителях.

Вакуумный фотоэлемент представляет собой стеклянный баллон, на внутренней поверхности которого нанесен слой фоточувствительного материала, образующий катод. Анод выполняется в виде кольца или сетки из металлической проволоки. При освещении катода возникает ток фотоэмиссии. Выходные токи этих элементов не превышают нескольких микроампер. В газонаполненных фотоэлементах (для заполнения применяются инертные газы Ne, Аr, Кr, Хе) выходной ток увеличивается в 5...7 раз из-за ионизации газа фотоэлектронами.

В фотоумножителях усиление первичного фототока происходит вследствие вторичной электронной эмиссии - "выбивания" электронов из вторичных катодов (эмиттеров), установленных между катодом и анодом. Общий коэффициент усиления в многокаскадных фотоумножителях может достигать сотен тысяч, а выходной ток - 1 мА. Фотоумножители и вакуумные, элементы могут использоваться при измерениях быстро изменяющихся величин, так как явление фотоэмиссии практически безынерционно.

Измерение давлений

Для измерения полного или статического давления в поток помешают специальные приемники с приемными отверстиями, которые трубками небольшого диаметра (пневмомагистралями) соединяются с соответствующими первичными преобразователями или измерительными приборами.

Простейшим приемником полного давления является цилиндрическая трубка с перпендикулярно срезанным торцом, изогнутая под прямым углом и ориентированная навстречу потоку. Для уменьшения чувствительности приемника к направлению потока (например, при измерениях в потоках с небольшой закруткой) применяются специальные конструкции приемников. Например, приемники полного давления с протоком (рис. 3.3) характеризуются погрешностью измерения не более 1 % при углах скоса до 45° при числе М<0,8.

При измерении статических давлений вблизи стенок каналов приемные отверстия диаметром 0,5...1 мм выполняются непосредственно в стенках (дренажные отверстия). В месте дренажа не должно быть неровностей, а кромки отверстий не должны иметь заусенцев. Этот вид измерений весьма распространен при исследовании течений в трубах и каналах в камерах сгорания, диффузорах и соплах.



Рис. 3.3. Схема приемника полного давления:

Рис. 3.4. Схема приемника статического давления:

а - клиновидный;

б - дисковый;

в - Г-образный для измерений при М£1,5

Для измерений статических давлений в потоке применяются клиновидные и дисковые приемники, а также приемники в виде трубок Г-образной формы (рис. 3.4) с приемными отверстиями, расположенными на боковой поверхности. Указанные приемники хорошо работают при дозвуковых и небольших сверхзвуковых скоростях.

Для исследования распределения давлений в поперечных сечениях каналов получили распространение гребенки полного и статического давлений, содержащие несколько приемников, или комбинированные гребенки, имеющие приемник как полного, так и статического давлений. При измерениях в потоках со сложной структурой течения (камеры сгорания, межлопаточные каналы турбомашин) применяются ориентируемые и неориентируемые приемники давления, позволяющие определить значения полного и статического давлений и направление вектора скорости. Первые из них предназначены для измерений в двумерных потоках, и их конструкция позволяет путем поворота устанавливать приемник в определенном положении относительно вектора местной скорости потока.

Неориентируемые приемники снабжены несколькими приемными отверстиями (5...7), которые выполнены в стенках цилиндра или сферы небольшого диаметра (3...10 мм) или располагаются в концах срезанных под определенными углами трубок (диаметр 0,5...2 мм), объединенных в единый конструктивный узел (рис. 3.5). При обтекании приемника потоком вокруг него формируется определенное распределение давлений. Используя измеренные с помощью приемных отверстий значения давлений и результаты предварительной градуировки приемника в аэродинамической трубе, можно определить значения полного и статического давлений и местное направление скорости потока.

При сверхзвуковых скоростях течений перед приемниками давлений возникают скачки уплотнения, и это необходимо учитывать при обработке результатов измерений. Например, по измеренным значениям статического давления в потоке р и полного за прямым скачком уплотнения р*" можно определить с помощью формулы Релея число М, а затем и значение полного давления в потоке:

При испытаниях двигателей и их элементов для измерения давлений применяются различные приборы (стрелочные деформационные, жидкостные, групповые регистрирующие манометры), позволяющие оператору контролировать режимы работы экспериментальных объектов. В информационно-измерительных системах используются разнообразные первичные преобразователи. Как правило, давление, точнее разность давлений (например, между измеряемым и атмосферным, между полным и статическим и т.д.), воздействует на упругий чувствительный элемент (мембрану), деформация которого преобразуется в электрический сигнал. Наиболее часто для этого применяются индуктивные и тензочувствительные преобразователи при измерении постоянных и медленно изменяющихся давлений и пьезокристаллические и индуктивные преобразователи при измерении переменных давлений.

Рис. 3.5. Схема пятиканального приемника давлений:

С x , С y , С z - составляющие вектора скорости; р i - измеряемые значения давления

В качестве примера на рис. 3.6 представлена схема преобразователя «Сапфир-22ДД». Преобразователи этого типа выпускаются в нескольких модификациях, предназначенных для измерения избыточного давления, разности давлений, вакуума, абсолютного давления, избыточного давления и вакуума в различных диапазонах. Упругий чувствительный элемент представляет собой металлическую мембрану 2, к которой сверху припаяна сапфировая мембрана с напыленными кремниевыми тензорезисторами. Измеряемая разность давлений воздействует на блок, состоящий из двух диафрагм 5. При смещении их центра усилие с помощью тяги 4 передается на рычаг 3, что приводит к деформации мембраны 2 с тензорезисторами. Электрический сигнал от тензорезисторов поступает в электронный блок 4, где преобразуется в унифицированный сигнал - постоянный ток 0...5 или 0...20 мА. Электрическое питание преобразователя осуществляется от источника постоянного тока напряжением 36 В.


При измерениях переменных (например, пульсирующих) давлений целесообразно максимальное приближение первичного преобразователя к месту измерения, так как наличие пневмомагистрали вносит существенные изменения в амплитудно-частотную характеристику системы измерений. Предельным в этом смысле является бездренажный метод, при котором миниатюрные преобразователи давления крепятся заподлицо с поверхностью, обтекаемой потоком (стенкой канала, лопаткой компрессора и т.д.). Известны преобразователи, имеющие высоту 1,6 мм и диаметр мембраны 5 мм. Используются также системы с приемниками давления и волноводами (l~100 мм) (метод вынесенных приемников давления), в которых для улучшения динамических

характеристик используются корректирующие акустические и электрические звенья.

При большом числе точек измерения в измерительных системах могут применяться специальные быстродействующие пневмокоммутаторы, которые обеспечивают поочередное подключение к одному преобразователю нескольких десятков точек измерения.

Для обеспечения высокой точности необходимо в рабочих условиях периодически контролировать средства измерения давления с помощью автоматических задатчиков.


Измерение температур

Для измерения температур применяются разнообразные средства измерений. Термоэлектрический термометр (термопара) представляет собой два проводника из различных материалов, соединенные (сваренные или спаянные) между собой концами (спаи). Если температуры спаев будут различны, то в цепи потечет ток под действием термоэлектродвижущей силы, значение которой зависит от материала проводников и от температур спаев. При измерениях, как правило, один из спаев термостатируется (для этого применяется тающий лед). Тогда ЭДС термопары будет однозначно связана с температурой «горячего» спая.

В термоэлектрический контур можно включить разнородные проводники. При этом результирующая ЭДС не изменится, если все места соединений будут находиться при одинаковой температуре. На этом свойстве основано применение так называемых удлинительных проводов (рис. 3.7), которые присоединяются к термоэлектродам ограниченной длины, и таким образом достигается экономия дорогостоящих материалов. При этом необходимо обеспечить равенство температур в местах присоединения удлинительных проводов (Т с) и термоэлектрическую идентичность их основной термопаре в диапазоне возможного изменения температур Т с и Т 0 (обычно не более 0...200°С). При практическом использовании термопар возможны случаи, когда температура Т 0 отлична от 0°С. Тогда для учета этого обстоятельства ЭДС термопары следует определить как E=Е изм +DE(T 0) и по градуировочной зависимости найти значение температуры. Здесь Е изм - измеренное значение ЭДС; DE(T 0) – значение ЭДС, соответствующее величине T 0 и определенное по градуировочной завиcимости. Градуировочные зависимости для термопар получают при температуре «холодных» спаев Т 0 , равной 0°С. Эти зависимости несколько отличаются от линейных. В качестве примера на рис. 3.8 приведена градуировочная зависимость для термопары платинородий-платина.

Некоторые характеристики наиболее распространенных термопар даны в табл. 3.1.

На практике наиболее распространены термопары с диаметром электродов 0,2...0,5 мм. Электроизоляция электродов достигается путем обмотки их асбестовой или кремнеземной нитью последующей пропиткой термостойким лаком, помещением термоэлектродов в керамические трубки или нанизыванием на них кусочков этих трубок («бусы»). Получили распространение термопары кабельного типа, представляющие собой два термоэлектрода, помещенные в тонкостенную оболочку, изготовленную из жаропрочной стали. Для изоляции термоэлектродов внутренняя полость оболочки набивается порошком MgO или Al 2 О 3 . Наружный диаметр оболочки - 0,5...6 мм.

Таблица 3.1

Для правильного измерения температуры конструктивных элементов термопары должны заделываться таким образом, чтобы горячий спай и термоэлектроды вблизи него не выступали над поверхностью и чтобы условия теплоотдачи от термометрируемой поверхности не нарушались из-за установки термопары. Для уменьшения погрешности измерений вследствие оттока (или притока) тепла от горячего спая по термоэлектродам за счет теплопроводности термоэлектроды на некотором расстоянии вблизи спая (7...10 мм) должны прокладываться примерно по изотермам. Схема заделки термопары, удовлетворяющей указанным требованиям, приведена на рис. 3.9. В детали выполнена канавка глубиной 0,7 мм, в которую укладываются спай и прилегающие к нему термоэлектроды; спай приваривается к поверхности контактной сваркой; канавка закрывается фольгой толщиной 0,2...0,3 мм.

Вывод термоэлектродов из внутренних полостей двигателя или его узлов осуществляется через штуцера. При этом необходимо следить за тем, чтобы термоэлектроды не слишком сильно нарушали структуру течения и не повреждалась их изоляция из-за трения друг о друга и об острые кромки конструкции.

При измерении температур вращающихся элементов показания термопар выводятся с помощью щеточных или ртутных токосъемников. Разрабатываются также бесконтактные токосъемники.

Схемы термопар, применяемых для измерения температуры потока газа, приведены на рис. 3.10. Горячий спай 1 представляет собой сферу диаметром d 0 (термоэлектроды могут также свариваться встык); термоэлектроды 2 вблизи спая закрепляются в изолирующей двухканальной керамической трубке 3, а затем выводятся из корпуса 4. На рисунке корпус 4 показан водоохлаждаемым (охлаждение необходимо при измерениях температур, превышающих 1300...1500 К), подвод и отвод охлаждающей воды осуществляются через штуцера 5.

При высоких значениях температуры газа возникают методические погрешности, обусловленные отводом тепла от спая вследствие теплопроводности по термоэлектродам к корпусу термопары и излучением в окружающую среду. Потери тепла из-за теплопроводности практически полностью можно устранить, обеспечив вылет изолирующей трубки, равный 3...5 ее диаметрам.

Для уменьшения отвода тепла излучением применяется экранирование термопар (рис. 3.10, б, в). Этим обеспечивается также защита спая от повреждений, а торможение потока внутри экрана способствует повышению коэффициента восстановления температуры при измерениях в высокоскоростных потоках.

Разработан также метод определения температуры газа по показаниям двух термопар, имеющих термоэлектроды различного


Рис. 3.9. Схема заделки термопары при измерении температуры элементов камер сгорания

Рис. 3.10. Схемы термопар для измерения температуры газа:

а - термопара с открытым спаем: б, в - экранированные термопары; г - двухспайная термопара; 1 - спай: 2 – термоэлектроды; 3 - керамическая трубка; 4 - корпус; 5 - штуцера для подвода и отвода воды


диаметра (рис. 3.10, г), позволяющий учесть отвод тепла излучением.

От конструктивного выполнения зависит инерционность термопар. Так, постоянная времени изменяется от 1...2 с для термопар с открытым спаем, до 3...5 с для экранированных термопар.

При исследовании полей температур (например, за турбиной, камерой сгорания и т.д.) применяются гребенки термопар, причем в ряде случаев они устанавливаются во вращающихся турелях, что позволяет достаточно подробно определять распределение температур во всем поперечном сечении.

Действие термометра сопротивления основано на изменении сопротивления проводника при изменении температуры. В качестве электросопротивления применяется проволока диаметром 0,05... 0,1 мм, выполненная из меди (t=-50...+150°С), никеля (t=-50...200°С) или платины (t=-200...500°С).

Проволока наматывается на каркас и помещается в чехол. Термометры сопротивления обладают высокой точностью и надежностью, однако они характеризуются большой инерционностью и не пригодны для измерения локальных температур. Термометры сопротивления применяются для измерений температуры воздуха на входе в двигатель, температур топлив, масел и т.д.

В жидкостных термометрах используется свойство теплового расширения жидкости. В качестве рабочих жидкостей применяются ртуть (t=-30...+700°C), спирт (t=-100...+75°C) и др. Жидкостные термометры используются при измерениях температуры жидких и газообразных сред в лабораторных условиях, а также при градуировке других приборов.

Оптические методы измерения температуры основаны на закономерностях теплового излучения нагретых тел. На практике могут быть реализованы три типа пирометров: яркостные пирометры, работа которых основана на изменении теплового излучения тела с температурой при некоторой фиксированной длине волн; цветовые пирометры, использующие изменение с температурой распределения энергии в пределах некоторого участка спектра излучения; радиационные пирометры, основанные на зависимости от температуры общего количества излучаемой телом энергии.

В настоящее время при испытаниях двигателей для измерений температур элементов конструкции нашли применение яркостные пирометры, созданные на базе фотоэлектрических приемников лучистой энергии. В качестве примера схема установки пирометра при термометрировании лопаток турбины на работающем двигателе представлена на рис. 32.11. С помощью линзы 2 «поле зрения» первичного преобразователя ограничено небольшим (5...6 мм) участком. Пирометр «осматривает» кромку и часть спинки каждой лопатки. Защитное стекло 1, выполненное из сапфира, предохраняет линзу от загрязнения и перегрева. Сигнал по световоду 3 передается к фотодетектору. Благодаря малой инерционности пирометр позволяет контролировать температуру каждой лопатки.

Для измерения температур конструктивных элементов двигателя могут применяться цветовые индикаторы температуры (термокраски или термолаки) - сложные вещества, которые при достижении определенной температуры (температура перехода) резко изменяют свой цвет из-за химического взаимодействия компонентов или происходящих в них фазовых переходов.

Рис. 3.11. Схема установки пирометра на двигателе:

(а) (1 - подвод обдувочного воздуха; 2 - первичный преобразователь) и схема первичного преобразователя

(б) (1 - защитное стекло; 2 - линза; 3 - световод)

Термокраски и термолаки, будучи нанесенными на твердую поверхность, после высыхания затвердевают и образуют тонкую пленку, которая способна изменять свой цвет при температуре перехода. Например, термокраска ТП-560 белого цвета при достижении t=560 °С становится бесцветной.

С помощью термоиндикаторов можно обнаружить зоны перегрева в элементах двигателя, в том числе и в труднодоступных местах. Трудоемкость измерений невелика. Однако их применение ограничено, так как не всегда можно установить, на каком режиме была достигнута максимальная температура. Кроме того, окраска термоиндикатора зависит от времени воздействия температуры. Поэтому термоиндикаторы, как правило, не могут заменить других методов измерений (например, с помощью термопар), но позволяют получить дополнительную информацию о тепловом состоянии исследуемого объекта.