Транзисторный выключатель постоянного тока схема. Электронный выключатель. На чем делаются транзисторные ключи

Всем привет! Решил я вот себе сделать мощный выключетель борта на модель. Так как увлекаюсь трофийками и модель часто бывает в воде и грязи, мелкие микрики умирают после пары-тройки покатух.

Идея сделать такой выключатель была давно, а тут наткнулся еще на вот это устройство: и там спрашивали можно ли использовать только выключатель отдельно, вот и пришла мысль себе подобное сварганить))). Спаял все по вышеуказаной схеме. Поставил сначала вот такой самодельный размыкатель из разъема питания:

Контакты у него луженые, поэтому не ржавеет, но все равно открытые контакты со временем могут забиться грязью, и пр. и решил поставить геркон, чтобы исключить открытого контакта. Вот так выглядит окончательный вариант устройства:

На самом регуляторе скорости, соответственно отпаят провода с выключателем и поставил перемычку. К сожалению фотографии платы не сделал, а эта залита эпоксидкой и в термоусадке, но думаю и так все понятно. Если кому все же будет интересно, на работе валяется еще один вариант на более крупном транзисторе - сфотографирую и выложу. Устройство простое и довольно надежное. Если кому нужно комутировать большие токи, то можно поставить более мощный транзистор или включить несколько штук впараллель. Вот видео работы:

Было желание поставить датчик холла, но в моем городе продаются только с замыканием сигнального провода на массу, а у меня нужно, чтоб коммутировался на "+", нужно брать тогда P-канальный мосфет, вобщем я отказался. Но для большей надежности можно конечно сделать и с датчиком холла, особенно кто на вертолетах. В моем случае геркона хватает "с головой".)


Основное назначение транзисторных выключателей, схемы которых предлагаются вниманию читателей, - включение и выключение нагрузки постоянного тока. Кроме этого, он может выполнять ещё дополнительные функции, например, индицировать своё состояние, автоматически отключать нагрузку при разрядке аккумуляторной батареи до предельно допустимого значения или по сигналу датчиков температуры, освещённости и др. На базе нескольких выключателей можно сделать переключатель. Коммутация тока осуществляется транзистором, а управление осуществляется одной простой кнопкой с контактом на замыкание. Каждое нажатие на кнопку изменяет состояние выключателя на противоположное.

Описание аналогичного выключателя было приведено в , но там для управления применены две кнопки. К достоинствам предлагаемых выключателей можно отнести бесконтактное подключение нагрузки, практически отсутствие потребляемого тока в выключенном состоянии, доступные элементы и возможность применения малогабаритной кнопки, занимающей мало места на панели прибора. Недостатки - собственный потребляемый ток (несколько миллиампер) во включённом состоянии, падение напряжения на транзисторе (доли вольта), необходимость принятия мер для защиты от импульсных помех надёжного контакта во входной цепи (может самопроизвольно выключаться при кратковременном нарушении контакта).

Схема выключателя показана на рис. 1. Принцип его работы основан на том, что у открытого кремниевого транзистора напряжение на переходе база-эмиттер транзистора - 0,5...0,7 В, а напряжение насыщения коллектор-эмиттер может быть 0,2...0,3 В. По сути, это устройство представляет собой триггер на транзисторах с разной структурой, управляемый одной кнопкой. После подачи питающего напряжения оба транзистора закрыты, а конденсатор C1 разряжен. При нажатии на кнопку SB1 ток зарядки конденсатора С1 открывает транзистор VT1, и следом за ним откроется транзистор VT2. При отпускании кнопки транзисторы остаются во включённом состоянии, питающее напряжение (за вычетом падения напряжения на транзисторе VT1) поступает на нагрузку и продолжится зарядка конденсатора С1. Он зарядится до напряжения, немногим большем, чем напряжение на базе этого транзистора, поскольку напряжение насыщения коллектор-эмиттер меньше напряжения база-эмиттер.

Рис. 1. Схема выключателя

Поэтому при следующем нажатии на кнопку напряжение база-эмиттер на транзисторе VT1 будет недостаточным для поддержания его в открытом состоянии и он закроется. Следом закроется транзистор VT2, и нагрузка обесточится. Конденсатор С1 разрядится через нагрузку и резисторы R3-R5, и выключатель вернётся в исходное состояние. Максимальный коллекторный ток транзистора VT1 I к зависит от коэффициента передачи тока h 21Э и базового тока I б: I к = I б · h 21Э. Для указанных на схеме номиналов и типов элементов этот ток - 100...150 мА. Чтобы выключатель работал нормально, ток, потребляемый нагрузкой, должен быть меньше этого значения.

У этого выключателя есть две особенности. Если на выходе выключателя будет короткое замыкание, после кратковременного нажатия на кнопку SB1 транзисторы на короткое время откроются и затем, после зарядки конденсатора С1, закроются. При уменьшении выходного напряжения примерно до 1 В (зависит от сопротивлений резисторов R3 и R4) транзисторы также закроются, т. е. нагрузка будет обесточена.

Второе свойство выключателя можно использовать для построения разрядного устройства для отдельных Ni-Cd или Ni-Mh аккумуляторов до 1 В перед составлением их в батарею и дальнейшей общей зарядке. Схема устройства показана на рис. 2. Выключатель на транзисторах VT1, VT2 подключает к аккумулятору разрядный резистор R6, параллельно которому подключён преобразователь напряжения , собранный на транзисторах VT3, VT4, питающий светодиод HL1. Светодиод индицирует состояние процесса разрядки и является дополнительной нагрузкой аккумулятора. Резистором R8 можно изменять яркость свечения светодиода, вследствие этого изменяется потребляемый им ток. Так можно производить корректировку разрядного тока. По мере разрядки аккумулятора снижается напряжение на входе выключателя, а также на базе транзистора VT2. Резисторы делителя в цепи базы этого транзистора подобраны так, что при напряжении на входе 1 В напряжение на базе уменьшится настолько, что транзистор VT2 закроется, а вслед за ним и транзистор VT1 - разрядка прекратится. При указанных на схеме номиналах элементов интервал регулировки тока разрядки - 40...90 мА. Если резистор R6 исключить, разрядный ток можно менять в интервале от 10 до 50 мА. При использовании сверхъяркого светодиода это устройство можно применить для построения карманного фонаря с защитой аккумулятора от глубокой разрядки.

Рис. 2. Схема разрядного устройства

На рис. 3 показано ещё одно применение выключателя - таймер. Он был использован мною в портативном приборе - испытателе оксидных конденсаторов. В схему дополнительно введён светодиод HL1, который индицирует состояние устройства. После включения загорается светодиод и конденсатор C2 начинает заряжаться обратным током диода VD1. При определённом напряжении на нём откроется транзистор VT3, который закоротит эмиттерный переход транзистора VT2, что приведёт к выключению устройства (светодиод погаснет). Конденсатор C2 быстро разрядится через диод VD1, резисторы R3, R4 и выключатель вернётся в исходное состояние. Время выдержки зависит от ёмкости конденсатора С2 и обратного тока диода. При указанных на схеме элементах оно составляет около 2 мин. Если взамен конденсатора С2 установить фоторезистор, терморезистор (или другие датчики), а взамен диода - резистор, получим устройство, которое будет выключаться при изменении освещённости, температуры и т. п.

Рис. 3. Схема таймера

Если в нагрузке есть конденсаторы большой ёмкости, выключатель может не включиться (это зависит от их ёмкости). Схема устройства, лишённого этого недостатка, показана на рис. 4. Добавлен ещё один транзистор VT1, который выполняет функцию ключа, а два других транзистора управляют этим ключом, чем исключается влияние нагрузки на работу выключателя. Но при этом потеряется свойство не включаться при наличии в цепи нагрузки короткого замыкания. Светодиод выполняет аналогичную функцию. При указанных на схеме номиналах деталей ток базы транзистора VT1 - около 3 мА.

Рис. 4. Схема устройства

Были опробованы несколько транзисторов КТ209К и КТ209В в качестве ключа. Они имели коэффициенты передачи тока базы от 140 до 170.

При токе нагрузки 120 мА падение напряжения на транзисторах было 120...200 мВ. При токе 160 мА - 0,5...2,2 В. Использование в качестве ключа составного транзистора КТ973Б позволило значительно увеличить допустимый ток нагрузки, но падение напряжения на нём было 750...850 мВ, и при токе 300 мА транзистор слабо грелся. В выключенном состоянии потребляемый ток настолько мал, что измерить его с помощью мультиметра DT830B не удалось. При этом транзисторы предварительно не отбирались ни по каким параметрам.

На рис. 5 представлена схема трёхканального зависимого переключателя. В ней объединены три выключателя, но при необходимости их число может быть увеличено. Кратковременное нажатие на любую из кнопок вызовет включение соответствующего выключателя и подключение соответствующей нагрузки к источнику питания. Если нажать на какую-либо другую кнопку, включится соответствующий выключатель, а предыдущий выключится. Нажатие на следующую кнопку включит следующий выключатель, а предыдущий опять отключится. При повторном же нажатии на ту же кнопку последний работающий выключатель выключится, и устройство возвратится в исходное состояние - все нагрузки будут обесточены. Режим переключения обеспечивает резистор R5. При включении какого-либо выключателя напряжение на этом резисторе возрастает, что приводит к закрыванию включённого ранее выключателя. Сопротивление этого резистора зависит от тока, потребляемого самими выключателями, в данном случае его значение - около 3 мА. Элементы VD1, R3 и С2 обеспечивают прохождение разрядного тока конденсаторов С3, С5 и С7. Через резистор R3 конденсатор С2 разряжает в паузах между нажатиями на кнопку. Если эту цепь исключить, останутся только режимы включения и переключения. Заменив резистор R5 проволочной перемычкой, получим три независимо работающих устройства.

Рис. 5. Схема трёхканального зависимого переключателя

Переключатель предполагалось применить в коммутаторе телевизионных антенн с усилителями, но с появлением кабельного телевидения необходимость в нём отпала, и проект не был реализован на практике.

В выключателях могут быть применены транзисторы самых разных типов, но они должны соответствовать определённым требованиям. Во-первых, все они должны быть кремниевыми. Во-вторых, транзисторы, коммутирующие ток нагрузки, должны иметь напряжение насыщения U к-э нас не более 0,2...0,3 В, максимальный допустимый ток коллектора I к макс должен быть в несколько раз больше коммутируемого тока, а коэффициент передачи тока h 21э достаточный, чтобы при заданном токе базы транзистор находился в режиме насыщения. Из имеющихся у меня в наличии транзисторов хорошо зарекомендовали себя транзисторы серий КТ209 и КТ502, несколько хуже - серий КТ3107 и КТ361.

Сопротивления резисторов можно изменять в значительных пределах. Если требуется большая экономичность и не нужна индикация состояния выключателя, светодиод не устанавливают, а резистор в цепи коллектора VT3 (см. рис. 4) можно увеличить до 100 кОм и более, но надо учесть, что при этом уменьшится базовый ток транзистора VT2 и максимальный ток в нагрузке. Транзистор VT3 (см. рис. 3) должен иметь коэффициент передачи тока h 21э более 100. Сопротивление резистора R5 в зарядной цепи конденсатора С1 (см. рис. 1) и аналогичных ему в других схемах может быть в интервале 100...470 кОм. Конденсатор C1 (см. рис. 1) и аналогичные ему в других схемах должны быть с малым током утечки, желательно применить оксиднополупроводниковые серии К53, но можно применять и оксидные, при этом сопротивление резистора R5 должно быть не более 100 кОм. При увеличении ёмкости этого конденсатора уменьшится быстродействие (время, по истечении которого устройство можно выключить после включения), а если уменьшить - снизится чёткость в работе. Конденсатор C2 (см. рис. 3) - только оксидно-полупроводниковый. Кнопки - любые малогабаритные с самовозвратом. Катушка L1 преобразователя (см. рис. 2) применена от регулятора линейности строк чёрно-белого телевизора, хорошо работает преобразователь и с дросселем на Ш-образном магнитопроводе от КЛЛ. Можно также воспользоваться рекомендациями, приведёнными в . Диод VD1 (см. рис. 5) может быть любым маломощным, как кремниевым, так и германиевым. Диод VD1 (см. рис. 3) должен быть обязательно германиевым.

Налаживания требуют устройства, схемы которых показаны на рис. 2 и рис. 5, остальные в налаживании не нуждаются, если нет особых требований и все детали исправны. Для налаживания разрядного устройства (см. рис. 2) потребуется источник питания с регулируемым напряжением на выходе. Прежде всего, взамен резистора R4 временно устанавливают переменный резистор сопротивлением 4,7 кОм (в максимум сопротивления). Подключают источник питания, предварительно установив на его выходе напряжение 1,25 В. Включают разрядное устройство нажатием на кнопку и устанавливают с помощью резистора R8 требуемый ток разрядки. После этого устанавливают на выходе источника питания напряжение 1 В, и с помощью добавочного переменного резистора добиваются выключения устройства. После этого надо несколько раз проверить напряжение выключения. Для этого необходимо увеличить напряжение на выходе источника питания до 1,25 В, включить устройство, затем необходимо плавно уменьшать напряжение до 1 В, наблюдая момент выключения. Затем измеряют введённую часть дополнительного переменного резистора и заменяют его постоянным с таким же сопротивлением.

Во всех других устройствах также можно реализовать аналогичную функцию выключения при снижении входного напряжения. Налаживание производится аналогично. При этом то обстоятельство, что вблизи точки выключения транзисторы начинают закрываться плавно и ток в нагрузке тоже будет плавно уменьшаться. Если в качестве нагрузки будет радиоприёмник, то это проявится как уменьшение громкости. Возможно, рекомендации, описанные в , помогут решить эту проблему.

Налаживание переключателя (см. рис. 5) сводится к временной замене постоянных резисторов R3 и R5 на переменные с сопротивлением в 2...3 раза больше. Последовательно нажимая на кнопки, с помощью резистора R5 добиваются надёжной работы. После этого повторными нажатиями на одну и ту же кнопку с помощью резистора R3 добиваются надёжного выключения. Затем переменные резисторы заменяют постоянными, как сказано выше. Для повышения помехоустойчивости параллельно резисторам R7, R13 и R19 надо установить керамические конденсаторы ёмкостью несколько нанофарад.

Литература

1. Поляков В. Электронный выключатель защищает аккумуляторную батарею. - Радио, 2002, № 8, с. 60.

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим:) Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

Как работает:

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот На сходном принципе действия.

В настоящее время в радиоэлектронной аппаратуре часто применяют электронные выключатели, в которых одной кнопкой можно осуществлять как ее включение, так и выключение. Сделать такой выключатель мощным, экономичным и малогабаритным можно, если применить полевой переключательный транзистор и цифровую КМОП микросхему.

Схема простого выключателя приведена на рис. 1. Транзистор VT1 выполняет функции электронного ключа, а триггер DD1 им управляет. Устройство постоянно подключено к источнику питания и потребляет небольшой ток - единицы или десятки микроампер.

Если на прямом выходе триггера высокий логический уровень, то транзистор закрыт, нагрузка обесточена. При замыкании контактов кнопки SB1 триггер переключится в противоположное состояние, на его выходе появится низкий логический уровень. Транзистор VT1 откроется, и напряжение поступит на нагрузку. В таком состоянии устройство будет находиться до тех пор, пока снова не окажутся замкнутыми контакты кнопки. Тогда транзистор закроется, нагрузка обесточится.

Указанный на схеме транзистор имеет сопротивление канала 0,11 Ом, а максимальный ток стока может достигать 18 А. Следует учитывать, что напряжение затвор-сток, при котором транзистор открывается, составляет 4...4,5 В. При напряжении питания 5...7 В ток нагрузки не должен превышать 5 А, в противном случае падение напряжения на транзисторе может превысить 1 В. Если напряжение питания больше, ток нагрузки может достигать 10... 12 А.

Когда ток нагрузки не превышает 4 А, транзистор можно использовать без теплоотвода. Если ток больше, необходим теплоотвод, либо следует применить транзистор с меньшим сопротивлением канала. Подобрать его нетрудно по справойной таблице, приведенной в статье "Мощные переключательные транзисторы фирмы International Rektifier" в "Радио", 2001, №5, с. 45.

На такой выключатель можно возложить и другие функции, например, автоматическое отключение нагрузки при снижении или превышении питающим напряжением заранее установленного значения. В первом случае это может понадобиться при питании аппаратуры от аккумуляторной батареи, чтобы не допустить ее чрезмерного разряда, во втором - для защиты аппаратуры от завышенного напряжения.

Схема электронного выключателя с функцией отключения при снижении напряжения приведена на рис. 2. В него дополнительно введены транзистор VT2,стабилитрон,конденсатор и резисторы, один из которых - подстроенный (R4).

При нажатии на кнопку SB 1 полевой транзистор VT1 открывается, напряжение поступает на нагрузку. Из-за зарядки конденсатора С1 напряжение на коллекторе транзистора в начальный момент не превысит 0,7 В, т.е. будет иметь низкий логический уровень. Если напряжение на нагрузке станет больше установленного подстроечным резистором значения, на базу транзистора поступит напряжение, достаточное для его открывания. В этом случае на входе "S" триггера останется низкий логический уровень, а кнопкой можно включать и выключать питание нагрузки.

Как только напряжение снизится ниже установленного значения, напряжение на движке подстроечного резистора станет недостаточным для открывания транзистора VT2 - он закроется. При этом на коллекторе транзистора напряжение увеличится до высокого логического уровня, который поступит на вход "S" триггера. На выходе триггера появится также высокий уровень, что приведет к закрыванию полевого транзистора. Нагрузка обесточится. Нажатия на кнопку в этом случае приведут только к кратковременному подключению нагрузки и последующему ее отключению.

Для введения защиты от превышения питающего напряжения автомат следует дополнить транзистором VT3, стабилитроном VD2 и резисторами R5, R6. В этом случае устройство работает аналогично описанному выше, но при увеличении напряжения выше определенного значения транзистор VT3 откроется, что приведет к закрыванию VT2, появлению высокого уровня на входе "S" триггера и закрыванию полевого транзистора VT1.

Кроме указанных на схеме, в устройстве можно применить микросхему К561ТМ2, биполярные транзисторы КТ342А-КТ342В, КТ3102А-КТ3102Е, стабилитрон КС156Г. Постоянные резисторы - МЛТ, С2-33, Р1-4, подстроенные - СПЗ-3, СПЗ-19, конденсатор - К10 17, кнопка - любая малогабаритная с самовозвратом.

При использовании деталей для поверхностного монтажа (микросхема CD4013, биполярные транзисторы КТ3130А-9 - КТ3130Г-9, стабилитрон BZX84C4V7, постоянные резисторы P1-I2, конденсатор К10-17в) их можно разместить на печатной плате (рис. 3) из односторонне фольгированного стеклотекстолита размерами 20x20 мм. Внешний вид смонтированной платы показан на рис. 4.

ПЕРЕКЛЮЧАТЕЛИ НА МИКРОСХЕМАХ

Микросхема К162КТ1. Микросхема (рис. 6.1) содержит два транзистора типа р-n-р с общим выводом коллектора и приме­няется в прерывателях с автономным управляющим источником. Огтаточное напряжение между контактами 1 и 7 при базовом токе 2 мА составляет: К162КТ1А - 100 мкВ, К162К.Т1Б - 200 мкВ, К162КТ1 - 300 мкВ. Сопротивление между эмиттерами равно 100 Ом. Обратное напряжение база - эмиттер - 30 В а коллек­тор - база - 20 В.

Рис. 6.1 Рис. 6.2

Микросхема К101КТ1. В микросхеме применены транзисторы с проводимостью типа n-р-n (рис. 6.2). Для управления микросхемой необходимо иметь управляющий сигнал, не связанный с общей ши­ной. Остаточное напряжение между контактами 3 и 7 для групп А, В составляет менее 50 мкВ, а для групп Б, Г - менее 150 мкВ. Напряжение между эмиттерами для групп А, Б составляет 6,3 b] а для групп В, Г - 3 В. Ток через транзисторы не более 10 мА! Сопротивление между эмиттерами менее 100 Ом. Ток утечки между эмиттерами менее 10~ 8 А.

Рис. 6.3

Микросхемы К168КТ1 и К168КТ2. Эти микросхемы (рис. 6.3) применяют в качестве коммутаторов аналогового сигнала. Управ­ляемый и входной сигналы имеют общую шину. Остаточное напря­жение сток - исток менее 10 мкВ. Сопротивление открытого тран­зистора менее 100 Ом. Ток утечки сток - истбк для групп А, Б, В - менее ШиА. Ток утечки детвора не превышает 10нА. Время включения равно 0,3 мкс, а время выключения - 0,7 мкс. Допусти­мые напряжения между затвором и подложкой 30 В, а между истоком и стоком - подложкой для группы А - 10 В, для группы Б - 15 В, для группы В - 25 В.

Модулятор последовательно-параллельного типа. Работа модулятора (рис. 6.4) основана на поочередном открывании и за­крывании транзисторов. Когда импульс положительной полярности приходит на базу VT1, то транзистор открывается и через него протекает ток, значение которого определяется сопротивлением ре­зистора RL Входной сигнал проходит на выход. В следующий полупериод управляющего сигнала положительный импульс откры­вает транзистор VT2, транзистор VT1 закрывается. Выход подклю­чается к нулевой шине. Важным фактором в работе схемы являет­ся равенство остаточных напряжений. Для выравнивания этих на­пряжений служит резистор R1.

Дистанционный выключатель. В схеме выключателя (рис. 6.5, а) для открывания транзисторного ключа используется выпрямленное с помощью диода VD1 и конденсатора С1 управляющее напряже­ние. В схеме отсутствуют импульсные помехи, связанные с пере­ключением транзисторов. Управление осуществляется гармонически­ми сигналами с амплитудой 2 - 3 В. Протекающий через транзисто­ры ток создает падение напряжения. Зависимость падения напря­жения на ключе от протекающего тока показана на рис. 6,5, б.



Однополупериодный модулятор. Модулятор (рис. 6.6, а) по­строен на микросхеме К101КТ1В. Управляющий сигнал прямоуголь­ной формы с амплитудой 2 В одновременно открывает оба транзи­стора. Входной сигнал поступает на первичную обмотку выходного трансформатора. Учитывая характеристику зависимости остаточного напряжения от управляющего тока, входной сигнал должен йревы-шать значение 20 - 30 мкВ.

Остаточное напряжение можно уменьшить, подбирая управля­ющий ток, протекающий через один из резисторов. В некоторых случаях регулировкой сопротивления резистора R1 можно добиться полной компенсации остаточного напряжения. На рис. 6.6, б пред­ставлена зависимость U 0 ст от I уир для наиболее типичного случая.

Двухполупериодный модулятор. Модулятор (рис. 6.7) работает на частоте 20 кГц. Амплитуда управляющих импульсов прямоуголь­ной формы равна 4 В. В результате поочередного открывания тран­зисторов VT1 и VT2 входной сигнал попадает на разные выводы первичной обмотки Тр2. На вторичной обмотке появится сигнал прямоугольной формы с амплитудой входного сигнала.

Для уменьшения влияния остаточного напряжения на транзи­сторах в схему введены резисторы R1 и R4. С помощью резистора R1 выравниваются управляющие базовые токи, в результате чего остаточное напряжение составляет около 4 мВ. Резистор R4 ком­пенсирует это напряжение и тем самым позволяет создать модуля­тор с чувствительностью около 10 мкВ.

Компенсационный модулятор. Для уменьшения начального уров­ня в модуляторе (рис. 6.8) применяется сложная схема подачи управляющнх сигналов. Поскольку начальный уровень модуляторов определяется импульсными сигналами, которые проходят через ем­кости база - коллектор, то подстройка сводится к изменению переднего и заднего фронтов управляющих сигналов. Управляющий сигнал с амплитудой 15 В подается на первичную обмотку транс­форматора. С помощью резисторов R3 и R4 и диодов VD3 и VD4 фронты управляющих импульсов заваливаются настолько, что поз­воляют скомпенсировать помеху до уровня менее 30 мкВ.

Рис. 6.4

Рис. 6.5

Рис. 6.6

Рис. 6.7 Рис. 6.8