В чем измеряется скорость передачи данных. Конспект урока: "Передача информации. Скорость передачи информации". Скорость передачи информации

Определение 1

Скорость передачи информации - это информационный объём, который передаётся в единицу времени.

Введение

Информация является основным термином в дисциплине информатика, который не имеет точной формулировки, но при этом, информация это:

  1. Предоставление новых фактов и знаний.
  2. Данные о предметах и событиях в окружающей среде, повышающие осведомлённость людей.
  3. Данные об объективной реальности внешней среды, уменьшающие пробелы в знаниях о различных явлениях и помогающие найти оптимальные решения.

Термин «информация» считается общенаучным, так как применяется в разных научных дисциплинах. Но, тем не менее, каждая научная дисциплина связывает этот термин с разными понятийными аспектами. Например, физика считает, что информация - это антиэнтропия (определяет упорядоченность и сложность системы).

В сообществе людей постоянно происходят процессы информационного обмена. Человек получает информацию из внешней среды при посредстве своих органов чувств, анализирует её и вырабатывает необходимые решения, которые затем воплощаются в практические воздействия на внешнюю среду. Информационные процессы представляют собой сбор, передачу, хранение и обработку информационных данных. Под передачей информации понимается операция трансляции сообщений от источника к приёмнику при помощи специальных каналов связи. Информационные данные могут передаваться в виде различных сигналов, которые сформированы из звука, света, ультразвука, электромагнитных волн, текста, графики и так далее. В качестве каналов связи возможно использовать атмосферу, различные кабельные сети, человека, его нервные клетки и так далее.

Определение 2

Под хранением информации понимается операция фиксации сообщения на каком-либо физическом носителе. В качестве носителя могут применяться бумажные и другие поверхности, магнитная лента, лазерные диски, жёсткие диски и другое.

Замечание 1

Под обработкой информации понимается операция формирования нового сообщения из набора существующих. При обработке информации есть вероятность увеличить её количество. Итогом обработки сообщений одного типа может стать выработка сообщений другого типа.

Скорость передачи информации

Замечание 2

Самой маленькой единицей измерения скорости трансляции данных считается один бит за одну секунду. Бит считается наименьшей единицей измерения информационного объёма. Бит/сек является основной единицей для измерения скорости информационной передачи в области вычислительной техники.

Но поскольку объём информации может ещё измеряться и в байтах, то существует и соответствующая единица измерения скорости, байт в секунду. Для справки, один байт - это восемь бит. И, соответственно, 1 Байт/с = 8 бит/с. Следует также обратить внимание на то обстоятельство, что в сокращённом формате бит пишется с маленькой буквы (бит/сек), а байт пишется с большой буквы (Б/сек). Но так как бит и байт представляют собой сравнительно небольшие объёмы данных, то для работы с большими информационными объёмами, применяются специальные умножающие приставки. Десятичный формат приставок хорошо нам известен из нашей обычной жизни при измерении длины, веса и так далее.

В частности, такими приставками являются:

  • кило (к), означает, что надо число умножить на тысячу (к примеру, один килограмм это тысяча грамм).
  • мега (М), означает, что необходимо число умножить на миллион (любопытно, что этот термин введён сравнительно недавно, в 1960 году).
  • гига (Г), означает, что число нужно умножить на один миллиард (ещё более странно, что этот термин зародился ещё в 1947 году, то есть на тринадцать лет раньше термина мега).

В сфере электронных вычислительных машин также используются приставки двоичного формата. Это следующие термины:

  • Киби (Ки), означает, что число надо умножить на1024 (то есть два в степени десять).
  • Меби (Ме), означает, что число следует умножить на 1 048 576 (220).
  • Гиби (Ги), означает, что число надо умножить на 1 073 741 824 (230).

Отметим также, что эта двоичная терминология была введена Международной Электротехнической Комиссией (МЭК) в 1999 году. Для измерения скоростных характеристик передачи информации могут применяться и десятичные приставки. Если для указания количества информационных данных применяются двоичные коэффициенты, то при определении скорости трансляции информации, как правило, применяют десятичные коэффициенты. То есть один кбит/сек соответствует 1000 бит/сек. Соответственно, один мегабит в секунду содержит один миллион бит в секунду, а один гигабит в секунду - это один миллиард бит в секунду. При использовании байтов, всё будет точно также, но при сокращениях будет большая буква Б и, конечно, надо помнить, что байт содержит восемь бит.

То есть: 1 килобайт в секунду (кбайт/сек или кБ/с или kB/s) равен 1000 байт/сек.

Для того, чтобы перевести килобиты и мегабиты в килобайты и мегабайты надо:

  • Для перевода количества информации в байтах в биты необходимо перемножить их на восемь.
  • Для перевода информационного объёма в битах в байты необходимо поделить на восемь.

Например, 100 Мбит/сек =100/8 =12,5 Мбайт/сек.

Двоичные коэффициенты для обозначения скорости передачи информации используются не очень часто. Например, 1 кибибит в секунду (1Кибит/сек или 1Kib/s) =1024 бит/сек. Здесь есть одна опасность. Иногда использование двоичных коэффициентов просто не указывают и есть вероятность что символ «М» означает не «Мега», а «Меби».

Скорость интернета

С момента появления сети интернет скорость передачи данных в сети измеряется в количестве бит в секунду. А количество данных, сохранённых на жёстком диске (или другом носителе), как правило, считается в байтах. Поэтому следует помнить, что при подключении к интернету, в предлагаемых тарифных планах скорость указывается в Мегабитах в секунду, а при реальном скачивании данных программное обеспечение указывает скорость в Мбайтах в секунду. То есть заявлено, к примеру, что скорость интернета будет 20 Мбит/сек, но реально мы видим 2,5 МБ/сек. Но никакого подвоха здесь нет, просто это восьмикратное отличие бита от байта.

Любой сигнал можно рассматривать как функцию времени, или как функцию частоты. В первом случае эта функция показывает, как меняются впоследствии параметры сигнала, например, напряжение или ток. Если эта функция имеет непрерывный характер, то говорят о непрерывном сигнале. Если эта функция имеет дискретный вид, то говорят о дискретном сигнале.

Частотное представление функции основано на том факте, что любая функция может быть представлена в виде ряда Фурье

(1),
где - частота, an,bn – амплитуды n-ой гармоники.

Характеристику канала, который определяет спектр частот, которые физическая среда, из которой сделана линия связи, которая образует канал, пропускает без существенного снижения мощности сигнала, называют полосой пропускания .

Максимальную скорость, из которой канал способен передавать данные, называют пропускной способностью канала или битовой скоростью.

В 1924 Найквист открыл взаимосвязь между пропускной здатностью канала и шириной его полосы пропускания.

Теорема Найквиста

где – максимальная скорость передачи H - ширина полосы пропускания канала, выраженная в Гц, М - количество уровней сигнала, которые используются при передаче. Например, из этой формулы видно, что канал с полосой 3 кГц не может передавать двухуровневые сигналы быстрее 6000 бит/сек.

Эта теорема также показывает, что, например, бессмысленно сканировать линию чаще, чем удвоена ширина полосы пропускания. Действительно, все частоты выше этой отсутствуют в сигнале, а потому вся информация, необходимая для возобновления сигнала будет собрана при таком сканировании.

Однако, теорема Найквиста не учитывает шум в канале, который измеряется как отношение мощности полезного сигнала к мощности шума: S/N . Эта величина измеряется в децибелах: 10log10(S/N) dB . Например, если отношение S/N равняется 10, то говорят о шуме в 10 dB если отношение равняется 100, то - 20 dB .

На случай канала с шумом есть теорема Шенона, по которой максимальная скорость передачи данные по каналу с шумом равняется:
H log2 (1+S/N) бит/сек, где S/N - соотношение сигнал-шум в канале.

Здесь уже не важно количество уровней в сигнале. Эта формула устанавливает теоретический предел, который редко достигается на практике. Например, по каналу с полосой пропускания в 3000 Гц и уровнем шума 30 dB (это характеристики телефонной линии) нельзя передать данные быстрее, чем со скоростью 30 000 бит/сек.

Методы доступа и их классификация

Метод доступа (accessmethod ) – это набор правил, которые регламентируют способ получения в пользование (“восторгу”) среды передачи. Метод доступа определяет, каким образом узлы получают возможность передавать данные.
Выделяют следующие классы методов доступа:

  1. селективные методы
  2. состязательные методы (методы случайного доступа)
  3. методы, основанные на резервировании времени
  4. кольцевые методы.

Все методы доступа, кроме состязательных, образуют группу методов детерминированного доступа. При использовании селективных методов для того, чтобы узел мог передавать данные, он должен получить разрешение. Метод называется опросом (polling ), если разрешения передаются всем узлам по очереди специальным сетевым оборудованием. Метод называется передачей маркера (token passing ), если каждый узел по завершении передачи передает разрешение следующему.

Методы случайного доступа (random access methods ) основаны на “соревновании” узлов за получение доступа к среде передачи. Случайный доступ может быть реализован разными способами: базовым асинхронным, с тактовой синхронизацией моментов передачи кадров, с прослушиванием канала перед началом передачи (“слушай, прежде чем говорить”), с прослушиванием канала во время передачи (“слушай, пока говоришь”). Могут быть использованы одновременно несколько способов из перечисленных.
Методы, основанные на резервировании времени , сводятся к выделению интервалов времени (слотов), которые распределяются между узлами. Узел получает канал в свое распоряжение на всю длительность выделенных ему слотов. Существуют варианты методов, которые учитывают приоритеты - узлы из больше высоким приоритетам получают большее количество слотов.
Кольцевые методы используются в ЛВМ с кольцевой топологией. Кольцевой метод вставки регистров заключается в подключении параллельно к кольцу одного или нескольких буферных регистров. Данные для передачи записываются в регистр, после чего узел ожидает межкадрового промежутка. Потом содержимое регистра передается в канал. Если во время передачи поступает кадр, он записывается в буфер и передается после своих данных.

Различают клиент-серверные и одноранговые методы доступа.

Клиент-серверные методы доступа допускают наличие в сети центрального узла, который управляет всеми другими. Такие методы распадаются на две группы: с опросом и без опроса.

Среди методов доступа с опросом наиболее часто используемый “опрос с остановкой и ожиданием” и “непрерывный автоматический запрос на повторение” (ARQ). Во всяком случае первичный узел последовательно передает узлам разрешение на передачу данных. Если узел имеет данные для передачи, он выдает их в среду передачи, если нет - или выдает короткий пакет данных типа “данных нет”, или просто ничего не передает.

При использовании одноранговых методов доступа все узлы равноправные. Мультиплексна передача со временным делением - наиболее простая одноранговая система без приоритетов, что использует твердое расписание работы узлов. Каждому узлу выделяется интервал времени, в течение которого узел может передавать данные, причем интервалы распределяются поровну между всеми узлами.

Аналоговые каналы передачи данные.

Под каналом передачи данные (КПД) понимается совокупность среды передачи (среды распространения сигнала) и технических средств передачи между канальными интерфейсами. В зависимости от формы информации, которая может передавать канал, различают аналоговые и цифровые каналы.

Аналоговый канал на входе (и, соответственно, на выходе) имеет непрерывный сигнал, те или другие характеристики которого (например, амплитуда или частота) несут переданную информацию. Цифровой канал принимает и выдает данные в цифровой (дискретной, импульсной) форме.

Теорема Шеннона-Хартли

Рассматривая все возможные многоуровневые и многофазные методы шифрования, теорема Шеннона-Хартли утверждает, что ёмкость канала C, означающая теоретическую верхнюю границу скорости передачи информации, которые можно передать с данной средней мощностью сигнала S через один аналоговый канал связи, подверженный аддитивному белому гауссовскому шуму мощности N равна:

C - ёмкость канала в битах в секунду; B - полоса пропускания канала в герцах; S - полная мощность сигнала над полосой пропускания, измеренной в ваттах или вольтах в квадрате; N - полная шумовая мощность над полосой пропускания, измеренной в ваттах или вольтах в квадрате; S/N - отношение сигнала к шуму(SNR) сигнала к гауссовскому шуму, выраженное как отношение мощностей.

Единицы измерения

Бит в секунду

На более высоких уровнях сетевых моделей, как правило, используется более крупная единица - байт в секунду (Б/c или Bps , от англ. b ytes p er s econd ) равная 8 бит/c.

Зачастую, ошибочно, считают, что бод - это количество бит , переданное в секунду. В действительности же это верно лишь для двоичного кодирования, которое используется не всегда. Например, в современных модемах используется квадратурная амплитудная модуляция (QAM - КАМ), и одним изменением уровня сигнала может кодироваться несколько (до 16) бит информации. Например, при символьной скорости 2400 бод скорость передачи может составлять 9600 бит/c благодаря тому, что в каждом временном интервале передаётся 4 бита.

Кроме этого, бодами выражают полную ёмкость канала, включая служебные символы (биты), если они есть. Эффективная же скорость канала выражается другими единицами, например битами в секунду (бит/c, bps).

Методы повышения скорости передачи информации

См. также

Примечания

Литература

  • Скорость передачи информации//В кн. Зюко А. Г. Помехоустойчивость и эффективность систем связи. М.: «Связь», 1972, 360с., стр. 33-35

Wikimedia Foundation . 2010 .

Смотреть что такое "Скорость передачи информации" в других словарях:

    скорость передачи информации - количество информации, передаваемой в единицу времени Отнесенное к единице времени количество информации об ансамбле входных сигналов (входных сообщений), содержащееся в ансамбле выходных сигналов (выходных сообщений). [Сборник рекомендуемых… …

    скорость передачи информации - informacijos perdavimo sparta statusas T sritis automatika atitikmenys: angl. information transmission rate vok. Informationsgeschwindigkeit, f rus. скорость передачи информации, f pranc. vitesse de transmission d information, f … Automatikos terminų žodynas

    скорость передачи информации - Количество информации, передаваемой по каналу в единицу времени … Политехнический терминологический толковый словарь

    скорость передачи информации пользователя - Скорость передачи информации пользователя, которая должна передаваться по радиоканалу. Например, выходная скорость речевого кодека. (МСЭ Т Q.1741). Тематики электросвязь, основные… … Справочник технического переводчика

    максимальная скорость передачи информации - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN maximal information rateMIR … Справочник технического переводчика

    скорость создания информации - эпсилон энтропия сообщения в единицу времени производительность источника Отнесенное к единице времени наименьшее количество информации о заданном ансамбле сообщений, содержащееся в другом ансамбле, представляющем заданный с указанной верностью.… … Справочник технического переводчика

    скорость переноса информации - скорость обмена информацией скорость передачи — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы скорость обмена информациейскорость передачи EN… … Справочник технического переводчика

    скорость обработки информации АЭ - 2.46 скорость обработки информации АЭ (processing speed): Скорость обработки и регистрации набора параметров сигналов АЭ системой в реальном времени без прерывания передачи данных, выраженная в имп./с.

Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых за единицу времени - секунду.

Единица измерения скорости передачи данных - бит в секунду.

Примечание. Часто используется единица измерения скорости - бод. Бод - число изменений состояния среды передачи в секунду. Так как каждое изменение состояния может соответствовать нескольким битам данных, то реальная скорость в битах в секунду может превышать скорость в бодах.

Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов и принятого способа синхронизации.

Так, для асинхронных модемов и телефонного канала связи диапазон скоростей составляет 300-9600 бит/с, а для синхронных -1200- 19200 бит/с.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его пропускная способность, которая оценивается количеством знаков, передаваемых по каналу за единицу времени - секунду. При этом в состав сообщения включаются и все служебные символы. Теоретическая пропускная способность определяется скоростью передачи данных. Реальная пропускная способность зависит от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений.

Единица измерения пропускной способности канала связи - знак в секунду.

Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации. Так как на основе обработки информации о состоянии объекта управления принимаются решения о том или ином ходе процесса, то от достоверности информации в конечном счете может зависеть судьба объекта. Достоверность передачи информации оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Требуемый уровень достоверности должны обеспечивать как аппаратура, так и канал связи. Нецелесообразно использовать дорогостоящую аппаратуру, если относительно уровня достоверности канал связи не обеспечивает необходимых требований.

Единица измерения достоверности: количество ошибок на знак - ошибок/знак.

Для вычислительных сетей этот показатель должен лежать в пределах 10-6 -10-7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Вторая характеристика позволяет более эффективно оценить надежность системы.

Единица измерения надежности: среднее время безотказной работы - час.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов.

Скорость передачи данных характеризует объем данных, который передается за конкретный период времени. Знать скорость передачи нужно, если вы что-то скачиваете из интернета или копируете данные с одного носителя информации на другой. Сначала нужно преобразовать единицы измерения размера файла и скорости передачи так, чтобы унифицировать их, а затем подставить значения в формулу S = A ÷ T, где A – объем данных, T – время передачи, S – скорость передачи. Также по этой формуле можно вычислить объем данных или время передачи, если вы знаете одну из переменных и скорость передачи.

Шаги

Часть 1

Преобразование единиц измерения

    Найдите единицы измерения размера файла. Размер файла может быть указан в битах (бит), байтах (Б), килобайтах (КБ), мегабайтах (МБ), гигабайтах (ГБ) и даже в терабайтах (ТБ).

    • Обратите внимание на прописные и строчные буквы. Например, бит обозначается как «бит» (строчными буквами), а байт – прописной буквой «Б».
  1. Обратите внимание на единицы измерения скорости передачи данных. Скорость передачи может выражаться в битах в секунду (бит/с), байтах в секунду (Б/с), килобайтах в секунду (КБ/с), мегабайтах в секунду (МБ/с) или гигабайтах в секунду (ГБ/с).

  2. Преобразуйте единицы в биты или байты и убедитесь, что у них одинаковый префикс (К, М, Г). Прежде чем воспользоваться формулой, убедитесь, что у вас однотипные единицы измерения размера файла и скорости передачи. О единицах измерения времени не думайте.

    • 8 бит = 1 байт (B); чтобы конвертировать биты в байты, разделите значение в битах на 8. Чтобы преобразовать байты в биты, умножьте значение в байтах на 8.
    • 1024 байта = 1 килобайт (КБ); чтобы конвертировать байты в килобайты, разделите значение в байтах на 1024. Чтобы преобразовать килобайты в байты, умножьте значение в килобайтах на 1024.
    • 1024 килобайта = 1 мегабайт (МБ); чтобы конвертировать килобайты в мегабайты, разделите значение в килобайтах на 1024. Чтобы преобразовать мегабайты в килобайты, умножьте значение в мегабайтах на 1024.
    • 1024 мегабайта = 1 гигабайт (ГБ); чтобы конвертировать мегабайты в гигабайты, разделите значение в мегабайтах на 1024. Чтобы преобразовать гигабайты в мегабайты, умножьте значение в гигабайтах на 1024.
    • 1024 гигабайта = 1 терабайт (ТБ); чтобы конвертировать гигабайты в терабайты, разделите значение в гигабайтах на 1024. Чтобы преобразовать терабайты в гигабайты, умножьте значение в терабайтах на 1024.
  3. Конвертируйте единицы измерения времени, если потребуется. В 1 минуте 60 секунд, а в 1 часе 60 минут. Чтобы преобразовать секунды в минуты, разделите значение в секундах на 60. Чтобы преобразовать минуты в часы, разделите значение в минутах на 60. Чтобы преобразовать часы в минуты, умножьте значение в часах на 60. Чтобы преобразовать минуты в секунды, умножьте значение в минутах на 60.

    • Чтобы преобразовать секунды в часы, разделите на 3600 (60 х 60). Чтобы конвертировать часы в секунды, умножьте на 3600.
    • Как правило, скорость передачи данных обозначается в секундах. Если передача большого файла заняла слишком много секунд, преобразуйте их в минуты или даже часы.

    Часть 2

    Вычисление скорости передачи, времени и объема данных
    1. Вычислите скорость передачи, разделив объем данных на время передачи. Подставьте значения объема данных (A) и времени передачи (T) в формулу S = A ÷ T.

      • Например, файл размером 25 МБ передается за 2 минуты. Сначала преобразуйте 2 минуты в секунды: 2 х 60 = 120 с. Таким образом, S = 25 МБ ÷ 120 с = 0,208. Следовательно, скорость передачи равна 0,208 МБ/с. Чтобы конвертировать это значение в килобайты, умножьте 0,208 на 1024: 0,208 x 1024 = 212,9. Итак, скорость передачи также равна 212,9 КБ/с.
    2. Вычислите время передачи, разделив объем данных на скорости передачи. То есть воспользуйтесь формулой T = A ÷ S, где T – время передачи, A – объем данных, S – скорость передачи.

      • Например, файл размером 134 ГБ был передан со скоростью 7 МБ/с. Сначала преобразуйте ГБ в МБ, чтобы унифицировать единицы измерения: 134 х 1024 = 137217 МБ. Итак, 137217 МБ были переданы со скоростью 7 МБ/с. Чтобы найти время передачи (T), разделите 137217 на 7 и получите 19602 секунд. Чтобы преобразовать секунды в часы, разделите 19602 на 3600 и получите 5,445 ч. Другими словами, чтобы передать 134 ГБ данных со скоростью 7 МБ/с, потребовалось 5,445 часа.
      • Чтобы использовать часы и минуты, разделите целую и дробную часть десятичной дроби. В нашем примере это 5 часов и 0,445 часа. Чтобы преобразовать 0,445 часа в минуты, умножьте на 60: 0,445 x 60 = 26,7 (26 минут и 0,7 минут). Чтобы преобразовать десятичную дробь в секунды, умножьте на 60: 0,7 x 60 = 42. Таким образом, время передачи составило 5 часов 26 минут и 42 секунды.
    3. Вычислите объем данных, умножив время передачи на скорость передачи. То есть воспользуйтесь формулой А = Т х S, где T – время передачи, A – объем данных, S – скорость передачи.

      • Например, нужно определить, сколько данных было передано за 1,5 часа со скоростью 200 бит/с. Сначала преобразуйте часы в секунды: 1,5 х 3600 = 5400 с. Итак, А = 5400 с х 200 бит/с = 1080000 бит/с. Чтобы преобразовать это значение в байты, разделите на 8: 1080000 ÷ 8 = 135000. Чтобы конвертировать значение в килобайты, разделите на 1024: 135000 ÷ 1024 = 131,84. Таким образом, 131,84 КБ данных было передано за 1,5 часа со скоростью 200 бит/с.