Язык программирования dip микросхем самому. Программирование микроконтроллеров для начинающих. Какой микроконтроллер выбрать для работы

Здравствуйте девочки и мальчики. Надеюсь вы не забыли свои волшебные палочки, потому что они вам понадобятся. Сегодня я расскажу вам как написать простую утилиту для программирования микроконтроллера и посмотреть как она работает без возни с программаторами, травлением и паянием плат. Программа увеличивает/уменьшает на единицу значение на индикаторе нажатии на кнопку.

Для начала нам потребуется среда разработки. Для программирования микроконтроллеров использую MPLAB IDE версии 7.20 (по моему эта прожка бесплатна). Далее нам потребуется компилятор - HI-TECH C PRO для микроконтроллеров PIC16. Этот зверёк имеет полную ознакомительную версию на некоторое время, а потом сваливается в демо режим. Отличие демо режима от обычного-только в размере получаемых программ(нам на это по барабану, для начала вполне сойдёт и демо версия). И, наконец, необходима среда для моделирования работы нашего устройства. Пусть это будет Proteus 7.4, потому что это единственная известная мне программа, позволяющая моделировать работу микроконтроллера и электрической схемы. У меня лицензионная версия этой программы.

Итак приступим. Для начала создадим проект в MP LAB. Project->New. В диалоговом окне указываем Имя проекта и путь к нему. Путь не должен содержать русских букв и папок с длинными именами (кстати забыл вас предупредить, что при установке MP LAB путь к нему также не должен содержать русских букв, пробелов и не быть слишком длинным).

#include //========= переменные ======== volatile unsigned char counter @ 0x30; // переменная для подсчитывания количества нажатий на кнопку bit Knop_bit_first; // Бит для обработки нажатий на кнопку 1 bit Knop_bit_second; // Бит для обработки нажатий на кнопку 2 //============================= unsigned char NST(unsigned char F) // функция перевода десятичного числа в код для семисегментного индикатора { // на входе десятичное число, на выходе бинарный код для вывода на индикатор switch (F) { case 0: return 0x3f; case 1: return 0x06; case 2: return 0x5b; case 3: return 0x4f; case 4: return 0x66; case 5: return 0x6d; case 6: return 0x7d; case 7: return 0x07; case 8: return 0x7f; case 9: return 0x6f; } } void main(void) // основная часть программы { //==== инициализация микроконтроллера и переменных ======= GIE=0; // запрет всех прерываний, установкой бита GIE в 0 TRISA=0xff; TRISB=0x00; PORTB=0x00; OPTION=0x00; INTCON=0x27; counter=0; Knop_bit_first=0; Knop_bit_second=0; //======================================================= while(1) // организация вечного цикла { if(RA0==0 && counter<9) { if(Knop_bit_first==0) { counter++; Knop_bit_first=1; } } else { Knop_bit_first=0; } if(RA1==0 && counter>0) { if(Knop_bit_second==0) { counter--; Knop_bit_second=1; } } else { Knop_bit_second=0; } PORTB=NST(counter); } }

В идеале это должно работать так - при нажатии на кнопку, число на индикаторе увеличивается на единицу.
В том пике, котрый выбрал я два порта-порт A (8 линий или 8 ножек в микросхеме) и порт B (8 линий). Через любую линию можно как вводить информацию в микроконтроллер так и выводить её. За настройку портов отвечают 2 системных регистра TRISA и TRISB. Запись TRISA=0000010 b означает, что все линии порта A настроены на вывод данных из микроконтроллера кроме первой.
В нашем случае нужно написать TRISA=00000011 b или если не заморачиваться с бинарными кодами TRISA=0xff(все линии порта А на ввод).
Считать информацию с порта или подать на выход можно используя биты RA0..RA3 и RB0..RB7. Это и используется в программе при опросе кнопок, подключённых к RA0 и RA1(кстати при нажатии кнопки, на ножке будет сигнал логического нуля, а при отпускании лог. ед.).
Чтобы скомпилировать нажмите F10. Проверьте в папке проекта должен появится файлик с расширением *.hex. Далее проверим работает ли наша программа. для этого необходимо собрать в протеусе схему нашего устройства.

Щелкните по кнопке P (на рисунке помечена цифрой 1). Это что-то наподобие библиотеки. Элемент можно найти вбиванием в поле keywords его названия. Нам понадобятся: pic16f628a, индикатор 7seg-com-cathode(красного цвета, мы же настоящие ситхи), резисторы chipres10K, кнопки button, батарейки cell и заземление, которое можно найти щёлкнув по кнопке terminals mode(на рисунке помечена цифрой 2) и выбрав из списка ground. Элементы по мере выуживания из библиотеки постепенно накапливаются в списке component mode.
Далее перетаскиваем всё что нам нужно на основное поле и собираем схему. Меняем номиналы сопротивлений и батареек на нужные-правый щелчок мышью по компоненту->Edit properties. Далее загрузим программу в микроконтроллер-правый щелчок мышью по микроконтроллеру->Edit properties->Program file и указываем путь до файлика нашей программы с расширением *.hex(помните он появлялся в паке проекта после компиляции). Запустить/остановить моделирование можно кнопками старт/стоп(спасибо КЭП), они на рисунке обозначены как 3 и 4.

Людей, работающих с программной частью микроконтроллеров, редко причисляют к классическим разработчикам ПО. Всё дело в том, что помимо софтверных знаний, им требуются ещё кое-какие сведения об используемом железе. Многих программистов такие знания не касаются вовсе.

Плюс, разработчик приложений или сайтов всегда подсознательно стремится к триумфу. Создание уникального и популярного продукта является той отметкой, разделяющей карьеру на нормальную и успешную. А создавая программу для микроконтроллера, вы вряд ли будете думать об общественной оценке вашего вклада. Впрочем, давайте по порядку.

Возраст

Начнём с главного: когда уже (ещё) можно начать прокладывать свой путь в профессию? Ответ предсказуем: чем раньше, тем лучше. И изобилие специальных наборов для детей к этому располагает. Даже дело не в том, что с возрастом вам будет сложнее перестраиваться и обучаться этой дисциплине. Просто опыт, как и во многих других IT-профессиях, здесь играет решающее значение.

Но не всё так плохо. Всё же в России этот рынок не очень развит. Начав путь разработчика ПО для МК после 30, вы сможете сделать неплохую карьеру в какой-то одной сфере или конкретном месте деятельности. Если, конечно, не пытаться стать «многостаночником». Всегда бывают исключения, но многое зависит от вашей прошлой деятельности. Наверное, стоит принять во внимание, что даже 10 лет в этой профессии не впечатляют работодателя.

Знания

От пустых слов перейдём к реальным требованиям. «MustKnow» в программировании микроконтроллеров - язык C/C++. Да, мировые тенденции сейчас указывают на переход на более совершенные или хотя бы простые языки ( Arduino или D). Но это будущее довольно отдалённое, закладывать путь в него можно разве что сегодняшним школьникам младших классов.

Кроме того, будет очень полезным знание ассемблера. Это необходимо для пошагового отслеживания исполнения кода, чтобы избежать плавающих ошибок и неоправданных потерь в быстродействии.

В остальном довольно общая компьютерная наука: протоколы передачи, простейшее знание электроники и схемотехники (хотя бы принципы работы АЦП/ЦАП, работать с ключами, питанием и пр.), умение читать (и понимать) техническую документацию на английском языке. Но главное - не работать по принципу “научного тыка”, в противном случае ваши микроконтроллеры рискуют превратиться в “камни”.

Еще один совет: постигать все эти знания необходимо на практике. Начать можно с дешёвых, но эффективных готовых плат со всей необходимой обвязкой, вроде Arduino или Raspberry Pi, которые в будущем наверняка станут для вас хорошими помощниками. А уже потом, если возникнет желание, поиграть с периферией.

Литература

На прошлой неделе, подачи одного из пользователей GeekBrains, я всерьёз задумался над вопросом “Где можно пройти курсы по программированию микроконтроллеров?”, да и вообще о профильной литературе в целом (и это несмотря на профильное высшее образование и около 10 лет опыта работы). Дело не в том, что их не существует (есть и курсы , и книги), просто главный инструмент разработчика ПО для МК - техническая документация, поставляемая вместе с платформой.

Все универсальные книги могут описать отличия, преимущества и недостатки тех или иных микроконтроллеров, на что обратить внимание при написании кода, обучить “красоте” и основным принципам. Но огромный плюс и он же главный недостаток данной профессии - подробная индивидуальная инструкция по работе с каждым более-менее серьёзным контроллером.

Это означает, что абсолютно любой человек может взять, прочитать её и через несколько мгновений организовать стандартное мигание “светодиодами”. Но даже с 50 годами стажа вы не сможете сесть за незнакомый микроконтроллер и, не читая документацию, сделать с ним что-то полезное (придётся, как минимум взглянуть на расположение контактов и их назначение по умолчанию).

IDE

Как и у популярных направлений программирования, здесь также имеются собственные IDE. Каждая крупная компания выпускает собственную среду разработки для своих продуктов. Есть и универсальные решения. Стоит обратить внимание на Keil uVision - это такой универсальный и, пожалуй, наиболее популярный инструмент (хоть и не лучший) на все случаи жизни. Полный перечень можете найти .

Работа

Если вам действительно нравится идея программировать микроконтроллеры, создавая уникальные современные гаджеты, то найти вакансии себе по душе не составит труда. Люди данной профессии востребованы, причём как в стартапах, так и в крупных прогосударственных структурах, в том числе военных.

Финансово трудно придётся новичкам (до 1 года опыта): зарплата в районе 20 тыс. рублей в месяц для программиста МК. Это вполне реальная цифра в регионах. Зато если вы живёте в столице, у вас есть опыт работы с популярным видом МК (от 3 лет активной деятельности) и голова на плечах, то вполне можно рассчитывать и на 150 тыс. рублей в месяц. В целом, не сказать, что конкуренция за места у данных разработчиков высокая, но с течением времени она неизбежно растёт.

Опять же, для людей с опытом есть вариант поискать счастье за границей. Особенно если у вас уже есть опыт полноценной работы. Дело в том, что в России идея IoT пока не слишком развивается. Да и вообще автоматизация пока не затрагивает небольшие системы. А в США, Японии и других развитых странах хороший разработчик ПО для МК - на вес золота. Правда, придётся учитывать иной уровень конкуренции и серьёзные требования по производительности труда.

И кстати

В любом случае, прежде чем осознанно встать на эти рельсы, займитесь программированием МК в качестве хобби. Сделайте “умной” свою комнату или дом, повторите несколько экспериментов из , опубликуйте собственные достижения, посвятите этому делу мозги и душу. И если не возникнет ощущения “колхоза”, то... добро пожаловать в клуб!

Минимальный материальный набор для изучения программирования

С этой статьи мы начнем конкретно заниматься одним вопросом — программирование микроконтроллеров . Процесс будет проходить следующим образом — сначала статья по устройству микроконтроллера (к примеру, первая статья будет по портам ввода-вывода), а затем статья по программированию. Сегодняшний наш разговор вводный, и будет посвящен вопросам материального и программного обеспечения процесса изучения основ программирования микроконтроллеров.

Стартовый набор начинающего микроконтроллерщика

Для начала я бы разделил начинающих микроконтроллерщиков на три условные группы:
— радиолюбители, желающие собирать готовые решения на микроконтроллерах, но не имеющие желания изучать программирование
— желающие освоить программирование и собирать конструкции на микроконтроллерах, но выбравшие наиболее простой путь — Arduino
— желающие полностью разобраться в устройстве и программирование микроконтроллеров и собирать свои собственные конструкции

Для первой группы все очень просто:
— приобрести программатор и научиться с ним работать

Для второй группы остановлюсь немного подробнее.
Arduino ориентирована на начинающих, непрофессиональных пользователей, и состоит из двух частей — программной и аппаратной.
Программная часть состоит из бесплатной программной оболочки для написания программ, их компиляции и программирования устройства.
Язык программирования — стандартный С++ с некоторыми изменениями облегчающими работу с этим языком (хотя есть возможность создавать программы или подключать готовые файлы проектов используя стандартный язык С++). Научиться программировать в Arduino очень просто (поэтому программы на Arduino называются «наброски») — весь процесс программирования сводится в основном к выбору необходимых готовых библиотек для получения конкретного результата.
Аппаратная часть состоит из готовой платы с микроконтроллером с необходимой обвязкой для нормальной работы микроконтроллера и плат расширения (шилды). Кроме того выпускается множество готовых датчиков и исполнительных устройств. Весь процесс сборки конструкции на Arduino напоминает конструктор «Лего» — выбираете необходимые платы расширения и устройства и стыкуете их с основной платой. Для загрузки программы отдельный программатор не требуется.
Arduino вещь конечно хорошая, но предназначена в основном только для тех, кто хочет собирать конструкции на микроконтроллерах, но не хочет загружать свои мозги лишними (по их мнению) знаниями (это сугубо мое мнение).

Ну а мы причисляем себя к третьей группе и пойдем хотя и тернистым, но очень интересным путем.

Для того, чтобы начать практическое изучение как устройства, так и программирование микроконтроллера, нужно иметь минимальную материальную базу — стартовый набор. Стартовый набор, необходимый по моему разумению для освоения микроконтроллера можно приобрести в интернет-магазине сайта (так-что эту статью можно считать и коммерческой рекламой:)):

Хочу отметить комментарий одного читателя сайта. К сожалению комментарий куда-то улетучился, и не сохранилось даже имя читателя, но человек подметил очень точно — это не первый вариант набора, а уже третий, более дорогой — изменилась комплектация набора, она стала более расширенной, добавлены новые (нужные) комплектующие (прошу читателя сайта, оставившего комментарий, меня извинить за ошибку работы сайта). Я не пытаюсь навязать читателям сайта что-то купить в интернет-магазине сайта. Это совсем необязательно, можете заказать у Китайских товарищей.

А теперь к главному:
1. Для практических опытов нам потребуется микроконтроллер (а лучше три):
— наиболее популярные и востребованные микроконтроллеры — ATmega8A-PU и ATtiny2313A-PU, ATtiny13A- PU. Кстати, ATtiny13 очень популярный МК, и не зря его называют «малюткой» — малые возможности — но серьезные разработки.
2. Для записи программы в микроконтроллер необходим программатор:
— идеальное решение, на мой взгляд, — программатор USBASP, от которого мы к тому-же будем получать напряжение 5 Вольт для будущих конструкций.
3. Для визуальной оценки и выводов результатов работы программы необходимы средства отображения информации:
— светодиоды
— семисегментный светодиодный индикатор
— знакосинтезирующий (буквенно-цифровой) LCD дисплей
4. Для изучения процессов общения микроконтроллера с другими устройствами:
— цифровой датчик температуры DS18B20 и часы реального времени DS1307 (очень практичные устройства)
5. Кроме того нам потребуются транзисторы, резисторы, кварцевые резонаторы, конденсаторы, кнопки:
— биполярные транзисторы структуры NPN и PNP
— набор резисторов различного номинала
— кварцы (вот тут я выкинул лишнее) на 32,768 кГц, 8 МГц.
— керамические конденсаторы на 22 pF
— тактовые кнопки
6. Для сборки конструкций на микроконтроллере понадобится макетная плата для монтажа без пайки и набор перемычек к ней:
— макетная плата МВ102 (идеально иметь две такие платы — они стыкуются между собой, что очень пригодится в дальнейшем)
— соединительные перемычки к макетной плате трех типов — гибкие (мама-мама, папа-папа) и жесткие П-образной формы

Получается вот такой набор:

В дальнейшем, часть из этого набора — макетная плата и перемычки к ней, программатор всегда будут нужны для проектирования и тестирования ваших конструкций, а остальная часть может быть применена в этих конструкциях.

С материальной базой разобрались, переходим ко второму вопросу.

Выбор языка программирования и среды разработки для программирования

Честно говоря, выбор языка программирования и среды разработки вопрос очень ответственный, навязывать кому-то свои предпочтения и что-то советовать дело довольно-таки трудное.
Давайте попробуем подойти к этому выбору не предвзято, чисто с практической стороны.
1. Существует два основных языка программирования микроконтроллеров — Ассемблер (язык низкого уровня) и Си (язык высокого уровня).
Если мы хотим программировать микроконтроллеры используя полностью все их возможности (а мы это хотим), то необходимо изучать эти два языка.
2. Среда разработки для программирования микроконтроллеров.
Тут выбор большой и очень много мнений. Поэтому можно сказать: «Каждая лягушка хвалит свое болото». Мне, к примеру, очень нравится малораспространенная графическая среда разработки «Algorithm Builder», и «квакать» о ее преимуществах перед другими программами я могу очень долго. Но будем делать выбор, как было сказано выше, не предвзято и практично.
Микроконтроллеры AVR выпускает фирма Atmel, она же предоставляет в наше распоряжение бесплатную среду программирования «Atmel Studio» (бывшая AVR Studio). На ней мы и остановимся.
Интегральная среда разработки (IDE — Integrated development environment) Atmel Studio позволит нам:
— писать программы как на Ассемблере, так и на Си (Почему на Си. Программа «Atmel Studio» позволяет писать программы на трех языках (О чем мы и погорим в первой статье), но есть одно но: программы на Си++ мы рассматривать не будем, по одной причине, и в следующей статье я расскажу об этом
— отладить программу
— перевести программу в машинный код (откомпилировать)
— записать программу в микроконтроллер

Все, выбор мы сделали:


Теперь осталось выполнить два пункта:
1. Обзавестись каким-нибудь стартовым набором (для начала хватит и микроконтроллера ATmega8, нескольких светодиодов, пары кнопок и сопротивлений к ним).
2. Установить (именно установить, а не скачать, и с регистрацией) с официального сайта Atmel (http://www.atmel.com/ru/) программу Atmel Studio.
Программировать микроконтроллеры мы будем с использованием программатора USBASP.
Отдельной статьи по Atmel Studio я писать не буду, будем изучать ее постепенно, по мере надобности и в связке со статьями по устройству и программированию микроконтроллеров.

Я категорически против такого подхода. Обычно это все заканчивается - либо ничем, либо забитые форумы с мольбами помочь. Даже если кому то помогают, то в 90% он больше никогда не всплывет на сайтах по электронике. В остальных 10% он так и продолжает заливать форумы мольбами, его будут сначала пинать, затем поливать грязью. Из этих 10% отсеивается еще 9%. Далее два варианта: либо таки до глупой головы доходит и все же происходит goto к началу, либо в особо запущенных вариантах, его удел копировать чужие конструкции, без единой мысли о том как это работает. Из последних зачастую рождаются ардуинщики.

Путь с нуля на мой взгляд заключается в изучении периферии и особенностей, если это микроконтроллер. Правильнее сначала разобраться с тем как дрыгать ножками, потом с таймерами, затем интерфейсами. И только тогда пытаться поднимать свой FAT. Да это не быстро, да это потребует времени и усилий, но практика показывает, как бы вы не пытались сократить этот путь, все равно всплывут проблемы, которые придется решать и время вы потратите куда больше, не имея этой базы.

Только не нужно путать теплое и мягкое. Первое - из всех правил есть исключения, лично видел людей, которые в руках раньше не держали микроконтроллеров, но за крайне короткий срок смогли обскакать бывалых опытных радиолюбителей, их в расчет не берем. Второе - мне попадались личности, которые начинали с копирования схем и сходу разбирались, но скорее это тоже исключение из правил. Третье - и среди ардуинщиков попадаются опытные программисты, это ведь всего навсего платформа, но и это скорее исключение.

Если говорить об общей массе, то дела обстоят именно так как я описал вначале: нежелание разбираться с основами, в лучшем случае оттягивает момент того, когда придется вернуться к этим вопросам. В худшем случае, вы быстро упретесь в потолок своих знаний и все время винить в своих проблемах кого то другого.

2. Перед решением задачи, дробите ее до абсурда вплоть до «припаять резистор», это помогает, проверено. Мелкие задачи решать куда проще. Когда большая задача разбита на кучу мелких действий, то все что остается - это выполнить их. Могу привести еще один годный совет, хоть он вам и покажется бредовым - заведите блокнотик и пишите в него все что собираетесь сделать. Вы думаете, итак запомню, но нет. Допустим сегодня у меня хорошее настроение и думаю о том, как собрать плату. Запиши план действий: сходить купить резистор, подготовить провода, сделать крепление дисплея. Потом все забудешь, откроешь блокнотик и смотришь - ага сегодня настроение попилить и построгать, сделаю крепление. Или собираешь ты плату и уже осталось допаять последний компонент, но не тут то было резисторы кончились, вот записал бы перед тем как паять, то вспомнил.

3. Не пользуйтесь кодогенераторами, нестандартными фичами и прочими упрощалками, хотя бы на первых этапах. Могу привести свой личный пример. Во времена активного использования AVR я пользовался кодогеном CAVR. Меня он полностью устраивал, хотя все говорили, что он кака. Звоночки звенели постоянно, были проблемы с библиотеками, с синтаксисом, с портированием, но было тяжело от этого отказаться. Я не разбирался как это работает, просто знал где и как поставить галочки.

Кол в мой гроб был вбит с появлением STM32, нужно было обязательно переползать на них, вот тогда то и появились проблемы. Проблемы мягко сказано, фактически мне пришлось осваивать микроконтроллеры и язык Си с нуля. Больше я не повторял прошлых ошибок. Надо сказать это уже пригодилось и не один раз. С тех пор мне довелось поработать с другими платформами и никаких затруднений не испытываю, подход оправдывает себя.

По поводу всех улучшалок и упрощалок, было одно очень хорошее сравнение, что они подобны инвалидным коляскам, которые едут по рельсам, можно ехать и наслаждаться, но вставать нельзя, куда везут - туда и приедешь.

4. Изучайте язык Си. Эх, как же часто я слышу, как начинающие радиолюбители хвалятся, что хорошо знают сишку. Для меня это стало кормом, всегда люблю проконсультироваться у таких собеседников. Обычно сразу выясняется, что язык они совершенно не знают. Могу сказать, что не смотря на кажущуюся простоту, людей которые действительно хорошо бы его знали, встречал не так много. В основном все его знают на столько, на сколько требуется для решения задач.

Однако, проблема на мой взгляд заключается в том, что не зная возможностей, вы сильно ограничиваете себя. С одной стороны не оптимальные решения, которые потребуют более мощного железа, с другой стороны не читаемый код, который сложно поддерживать. На мой взгляд, читаемость и поддерживаемость кода занимает одно из важнейших мест и мне сложно представить, как можно этого добиться не используя все возможности языка Си.

Очень многие начинающие брезгуют изучением языка, поэтому если вы не будете как все, то сразу станете на две ступени выше остальных новичков. Так же не никакой разницы, где изучать язык. На мой взгляд, микроконтроллер для этого не очень подходит. Гораздо проще поставить какую нибудь Visual studio или Qt Creator и порешать задачки в командной строке.

Хорошим подспорьем будет также изучение всяких тестов по языку, которые дают при собеседованиях. Если порыться то можно много нового узнать.

5. Изучение ассемблера? Бояться его не нужно, равно как и боготворить. Не нужно думать, что умея написать программу на ассемблере, вы сразу станете гуру микроконтроллеров, почему то это частое заблуждение. В первую очередь это инструмент. Даже если вы не планируете использовать его, то все равно я бы настоятельно рекомендовал написать хотя бы пару программ. Это сильно упростит понимание работы микроконтроллера и внутреннего устройства программ.

6. Читайте даташит. Многие разработчики, пренебрегают этим. Изучая даташит вы будете на две ступени выше тех разработчиков. Делать это крайне полезно, во первых это первоисточник, какие бы сайты вы не читали, в большинстве случаев они повторяют информацию из даташита, зачастую с ошибками и недосказанностями. Кроме того, там может находиться информация, о которой вы не задумываетесь сейчас, но которая может пригодиться в будущем. Может статься так, что вылезет какая то ошибка и вы вспомните что да, в даташите об этом было сказано. Если ваша цель стать хорошим разработчиком, то этого этапа не избежать, читать даташиты придется, чем раньше вы начнете это делать, тем быстрее пойдет рост.

7. Часто народ просит прислать даташит на русском. Даташит - это то, что должно восприниматься как истина, самая верная информация. Даже там не исключены ошибки. Если к этому добавятся ошибки переводчика, он ведь тоже человек, может даже не нарочно, просто опечататься. Либо у него свое видение, может что-то упустить, на его взгляд не важное, но возможно крайне важное для вас. Особенно смешной становится ситуация, когда нужно найти документацию на не сильно популярные компоненты.

На мой взгляд, намного проще исключить заранее весь слой этих проблем, чем вылавливать их потом. Поэтому я категорически против переводов, единственный верный совет - изучайте английский язык, чтобы читать даташиты и мануалы в оригинале. Понять смысл фразы с помощью программ переводчиков можно, даже если уровень вашего языка полный ноль.

Мною был проведен эксперимент: в наличии был студент, даташит и гугл переводчик. Эксперимент №1: студенту вручен даташит и дано задание самостоятельно найти нужные значения, результат - «да как я смогу», «да я не знаю английский», «я ничего не нашел/я не понял» типичные фразы, говорящие о том, что он даже не пытался. Эксперимент №2: тому же студенту, вручен все тот же даташит и тоже задание, с той разницей, что я сел рядом. Результат - через 5 минут он сам нашел все нужные значения, абсолютно без моего участия, без знания английского.

8. Изобретайте велосипед. Например, изучаете какую то новую штуку, допустим транзистор, дядька Хоровиц со страниц своей книги авторитетно заявляет, что транзистор усиливает, всегда говорите - НЕ ВЕРЮ. Берем в руки транзистор включаем его в схему и убеждаемся что это действительно так. Есть целый пласт проблем и тонкостей, которые не описываются в книгах. Прочувствовать их можно только, когда возьмешь в руки и попробуешь собрать. При этом получаем кучу попутных знаний, узнаем тонкости. Кроме того, любая теория без практики забудется намного быстрее.

На первоначальном этапе, мне очень сильно помог один метод - сначала собираешь схему и смотришь как она работает, а затем пытаешься найти обоснование в книге. То же самое и с программной частью, когда есть готовая программа, то проще разобраться в ней и соотнести куски кода, какой за что отвечает.

Также важно выходить за рамки дозволенного, подать побольше/поменьше напряжение, делать больше/меньше резисторы и следить за изменениями в работе схемы. В мозгу все это остается и оно пригодится в будущем. Да это чревато расходом компонентов, но я считаю это неизбежным. Первое время я сидел и палил все подряд, но теперь перед тем как поставить тот или иной номинал, всегда вспоминаю те веселые времена и последствия того, если поставить неверный номинал.

9. А как бы я сделал это, если бы находился на месте разработчиков? Могу ли я сделать лучше? Каждый раз задавайте себе эти вопросы, это очень хорошо помогает продвигаться в обучении. Например, изучите интерфейсы 1wire, i2c, spi, uart, а потом подумайте чем они отличаются, можно ли было сделать лучше, это поможет осознать почему все именно так, а не иначе. Так же вы будете осознавать, когда и какой лучше применить.

10. Не ограничивайтесь в технологиях. Важно что этот совет имеет очень тонкую грань. Был этап в жизни, когда из каждой подворотни доносилось «надо бы знать ПЛИС», «а вот на ПЛИС то можно сделать». Формально у меня не было целей изучать ПЛИСины, но и пройти мимо было никак нельзя. Этому вопросу было выделено немного времени на ознакомление. Время не прошло зря, у меня был целый ряд вопросов, касаемых внутреннего устройства микроконтроллеров, именно после общения с плисинами я получил ответы на них. Подобных примеров много, все знания, которые я приобретал в том или ином виде, рано или поздно пригодились. У меня нет ни единого бесполезного примера.

Но как было сказано, вопрос технологий имеет тонкую грань. Не нужно хвататься за все подряд. В электронике много направлений. Может вам нравится аналог, может цифра, может вы специалист по источникам питания. Если не понятно, то попробуйте себя везде, но практика показывает, что вначале лучше сконцентрироваться на чем то конкретном. Даже если нужно жать в нескольких направлениях, то лучше делать это ступеньками, сначала продавить что то одно.

11. Если спросить начинающего радиолюбителя, что ему больше нравится программирование или схемотехника, то с вероятностью 99% ответ будет программирование. При этом большую часть времени эти программисты тратят на изготовление плат ЛУТом/фоторезистом. Причины в общем то понятны, но довольно часто это переходит в некий маразм, который состоит в изготовлении плат ради изготовления плат.

В интернетах практически единственный трушный путь к программированию это стать джедаем изготовления печатных плат. Я тоже прошел через этот путь, но каждый раз задаю себе вопрос зачем? С тех пор, как я приобрел себе пару плат, на все случаи жизни, каждый раз думаю о том, что мог бы спокойно прожить все это время без самодельных плат. Мой совет, если есть хоть капля сомнений, то лучше не заморачиваться и взять готовую отладочную плату, а время и средства лучше бы потратить на программирование.

12. Следующий совет, особенно болезненный, мне очень не хочется его обсуждать, но надо. Часто мне пишут, мол ххх руб за ууу дорого, где бы подешевле достать. Вроде бы обычный вопрос, но обычно я сразу напрягаюсь от него, так как зачастую он переходит в бесконечные жалобы на отсутствие денег. У меня всегда возникает вопрос: почему бы не оторвать пятую точку и не пойти работать? Хоть в тот же макдак, хоть на стройку, потерпеть месяц, зато потом можно приобрести парочку плат, которых хватит на ближайший год. Да я знаю, что маленьких городах и селах сложно найти работу, переезжайте в большой город. Работайте на удаленке, в общем нужно крутиться. Просто жаловаться нет смысла, выход из ситуации есть, кто ищет его тот находит.

13. В ту же копилку внесу очень болезненный вопрос инструмента. Инструмент должен позволять вам максимально быстро разрабатывать устройства. Почему то очень многие разработчики не ценят свое время. Типичный пример, дешевая обжимка для клемм, на которой так любят экономить многие работодатели. Проблема в том, что она даже обжимает не правильно, из-за этого провода вываливаются. Приходится производить кучу дополнительных манипуляций, соответственно тратить время. Но как известно дурак платит трижды, поэтому низкая цена кримпера возрастет во много раз, за счет затрачиваемого времени и плохого качества обжима.

Не говорю что дешевое = плохое, нет - все зависит от ситуации. Вернусь к примеру кримпера, было время когда обжимал чем попало, поэтому часто возникали проблемы. Особенно неприятно, когда заводишь плату и она не работает, после долгих поисков ошибки понимаешь что из-за плохо обжатого проводочка, обидно. С тех пор как появилась нормальная обжимка этих проблем нет. Да внутренняя жаба и квакала, и душилась от ее стоимости, но ни разу не пожалел об этом решении. Все что я хочу сказать, что поработав с нормальным инструментом, совершенно не хочется возвращаться к плохому, даже не хочется обсуждать это. Как показывает практика, лучше не экономить на инструментах, если сомневаетесь - возьмите у кого нибудь потестить, почитайте отзывы, обзоры.

14. Заведите сайт, можно писать на нем, что угодно, просто как записки. Практика показывает, что работодатели все равно его не читают, но сам факт производит большой эффект.

15. Тонкий вопрос: профильное высшее образование, нужно ли оно? Мне известны не единичные случаи, когда люди работали абсолютно без образования и по опыту и знаниям они могли дать прикурить любому дипломированному специалисту. Собственно, у меня нет профильного образования, испытываю ли я от этого дискомфорт? В определенной степени да.

Еще в самом начале, когда микроконтроллеры были для меня хобби, я много помогал с курсовыми и дипломами разных вузов, просто чтобы оценить свой уровень. Могу сказать уверенно, что уровень в целом невысок вне зависимости от имени вуза. Учиться несколько лет, для того чтобы написать такой диплом, совершенно необязательно. Достигнуть этого можно самостоятельно за весьма короткий срок. И все же зачастую бывали моменты, когда студенты знали какой то предмет, который они проходили на 2-3 курсе, а я этого не знал. Хоть все эти знания и компенсировались самообразованием, но все же лучше было бы не тратить на это время.

Вуз ради бумажки. Могу сказать, что были и такие ситуации, когда предлагали работу, которая требовала обязательного наличия образования и было обидно, что именно в тот момент бумажки не было. Но в целом, история показывает, что большинству работодателей наплевать на вашу бумажку.

Следующий момент довольно часто не учитывается, это окружение. Не забывайте, что люди, с которыми вы учитесь это ваше поколение, не исключено что вам с ними работать. Количество фирм работающих в одной отрасли сильно ограничено. Практика показывает, что даже в больших городах все и все друг о друге знают, вплоть до интимных подробностей.

Еще один момент это возможности. Зачастую у вузов есть свои возможности - оборудование, может какие то секции, может какие то программы работы за рубежом, этим нужно пользоваться, если есть хоть малейшая возможность. Если в вузе вы не видите перспективы, идите в другой, мир на каком то одном не заканчивается.

Если подытожить то совет таков: если есть хоть малейшая возможность - нужно идти учиться, обязательно по профилю, если есть хоть какие то шансы, то лезть везде, а не отсиживать штаны на задней парте. Заводить знакомства, параллельно дома самому практиковаться, развиваться.

16. Поздно ли начинать программировать в 20, 30, 40, 50 лет? Практика других людей показывает, что возраст вообще не помеха. Многие почему то не учитывают то, что есть целый пласт работы, которую молодые в силу своих амбиций не хотят делать. Поэтому работодатели предпочитают брать тех, кто будет ее тащить. Это ваш шанс зацепиться, а дальше все зависит только от вас.

И последний совет. Многие радиолюбители необщительные, сердитые и раздражительные - считайте это спецификой работы. Излучайте добро и позитив, будьте хорошим человеком.


В этом учебном курсе по avr я постарался описать все самое основное для начинающих программировать микроконтроллеры avr . Все примеры построены на микроконтроллере atmega8 . Это значит, что для повторения всех уроков вам понадобится всего один МК. В качестве эмулятора электронных схем используется Proteus - на мой взгляд, - лучший вариант для начинающих. Программы во всех примерах написаны на компиляторе C для avr CodeVision AVR. Почему не на каком-нибудь ассемблере? Потому что начинающий и так загружен информацией, а программа, которая умножает два числа, на ассемблере занимает около ста строк, да и в сложных жирных проектах используют С. Компилятор CodeVision AVR заточен под микроконтроллеры atmel, имеет удобный генератор кода, неплохой интерфейс и прямо с него можно прошить микроконтроллер.

В этом учебном курсе будет рассказано и показано на простых примерах как:

  • Начать программировать микроконтроллеры, с чего начать, что для этого нужно.
  • Какие программы использовать для написания прошивки для avr, для симуляции и отладки кода на ПК,
  • Какие периферийные устройства находятся внутри МК, как ими управлять с помощью вашей программы
  • Как записать готовую прошивку в микроконтроллер и как ее отладить
  • Как сделать печатную плату для вашего устройства
Для того, чтобы сделать первые шаги на пути программирования МК, вам потребуются всего две программы:
  • Proteus - программа-эмулятор (в ней можно разработать схему, не прибегая к реальной пайке и потом на этой схеме протестировать нашу программу). Мы все проекты сначала будем запускать в протеусе, а потом уже можно и паять реальное устройство.
  • CodeVisionAVR - компилятор языка программирования С для AVR. В нем мы будем разрабатывать программы для микроконтроллера, и прямо с него же можно будет прошить реальный МК.
После установки Proteus, запускаем его
Он нам предлагает посмотреть проекты которые идут с ним, мы вежливо отказываемся. Теперь давайте создадим в ней самую простую схему. Для этого кликнем на значок визуально ничего не происходит. Теперь нужно нажать на маленькую букву Р (выбрать из библиотеки) в панели списка компонентов, откроется окно выбора компонентов
в поле маска вводим название компонента, который мы хотим найти в библиотеке. Например, нам нужно добавить микроконтроллер mega8
в списке результатов тыкаем на mega8 и нажимаем кнопку ОК . У нас в списке компонентов появляется микроконтроллер mega8
Таким образом добавляем в список компонентов еще резистор, введя в поле маска слово res и светодиод led

Чтобы разместить детали на схеме, кликаем на деталь, далее кликаем по полю схемы, выбираем место расположения компонента и еще раз кликаем. Для добавления земли или общего минуса на схему слева кликаем "Терминал" и выбираем Ground. Таким образом, добавив все компоненты и соединив их, получаем вот такую простенькую схемку
Все, теперь наша первая схема готова! Но вы, наверное, спросите, а что она может делать? А ничего. Ничего, потому что для того, чтобы микроконтроллер заработал, для него нужно написать программу. Программа - это список команд, которые будет выполнять микроконтроллер. Нам нужно, чтобы микроконтроллер устанавливал на ножке PC0 логический 0 (0 вольт) и логическую 1 (5 вольт).

Написание программы для микроконтроллера

Программу мы будем писать на языке С в компиляторе CodeVisionAVR. После запуска CV, он спрашивает нас, что мы хотим создать: Source или Project Мы выбираем последнее и нажимаем кнопку ОК. Далее нам будет предложено запустить мастер CVAVR CodeWizard (это бесценный инструмент для начинающего, потому как в нем можно генерировать основной скелет программы) выбираем Yes
Мастер запускается с активной вкладкой Chip, здесь мы можем выбрать модель нашего МК - это mega8, и частоту, на которой будет работать МК (по умолчанию mega8 выставлена на частоту 1 мегагерц), поэтому выставляем все, как показано на скриншоте выше. Переходим во вкладку Ports
У микроконтроллера atmega8 3 порта: Port C, Port D, Port B. У каждого порта 8 ножек. Ножки портов могут находиться в двух состояниях:
  • Выход
С помощью регистра DDRx.y мы можем устанавливать ножку входом или выходом. Если в
  • DDRx.y = 0 - вывод работает как ВХОД
  • DDRx.y = 1 вывод работает на ВЫХОД
Когда ножка сконфигурирована как выход, мы можем выставлять на ней лог 1 (+5 вольт) и логический 0 (0 вольт). Это делается записью в регистр PORTx.y. Далее будет подробно рассказано про порты ввода-вывода. А сейчас выставляем все, как показано на скриншоте, и кликаем File->Generate, Save and Exit. Дальше CodeWizard предложит нам сохранить проект, мы его сохраняем и смотрим на код:

#include //библиотека для создания временных задержек void main(void) { PORTB=0x00; DDRB=0x00; PORTC=0x00; DDRC=0x01; // делаем ножку PC0 выходом PORTD=0x00; DDRD=0x00; // Timer/Counter 0 initialization TCCR0=0x00; TCNT0=0x00; // Timer/Counter 1 initialization TCCR1A=0x00; TCCR1B=0x00; TCNT1H=0x00; TCNT1L=0x00; ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x00; OCR1BH=0x00; OCR1BL=0x00; // Timer/Counter 2 initialization ASSR=0x00; TCCR2=0x00; TCNT2=0x00; OCR2=0x00; // External Interrupt(s) initialization MCUCR=0x00; // Timer(s)/Counter(s) Interrupt(s) initialization TIMSK=0x00; // Analog Comparator initialization ACSR=0x80; SFIOR=0x00; while (1) { }; }


Здесь вам может показаться все страшным и незнакомым, но на самом деле все не так. Код можно упростить, выкинув инициализацию неиспользуемых нами периферийных устройств МК. После упрощения он выглядит так:

#include //библиотека для работы с микроконтроллером mega8 #include //библиотека для создания временных задержек void main(void) { DDRC=0x01; /* делаем ножку PC0 выходом запись 0x01 может показаться вам незнакомой, а это всего лишь число 1 в шестнадцатиричной форме, эта строка будет эквивалентна 0b00000001 в двоичной, далее я буду писать именно так.*/ while (1) { }; }


Всё хорошо. Но для того, чтобы светодиод замигал, нам нужно менять логический уровень на ножке PC0. Для этого в главный цикл нужно добавить несколько строк:

#include //библиотека для работы с микроконтроллером mega8 #include //библиотека для создания временных задержек void main(void) { DDRC=0x01; /* делаем ножку PC0 выходом запись 0x01 может показаться вам незнакомой, а это всего лишь число 1 в шестнадцатиричной форме, эта строка будет эквивалентна 0b00000001 в двоичной, далее я буду писать именно так.*/ while (1)//главный цикл программы {// открывается операторная скобка главного цикла программы PORTC.0=1; //выставляем на ножку 0 порта С 1 delay_ms(500); //делаем задержку в 500 милисекунд PORTC.0=0; //выставляем на ножку 0 порта С 0 delay_ms(500); //делаем задержку в 500 милисекунд };// закрывается операторная скобка главного цикла программы }


Все, теперь код готов. Кликаем на пиктограму Build all Project files, чтобы скомпилировать (перевести в инструкции процессора МК) нашу программу. В папке Exe, которая находится в нашем проекте, должен появиться файл с расширением hex, это и есть наш файл прошивки для МК. Для того, чтобы нашу прошивку скормить виртуальному микроконтроллеру в Proteus, нужно два раза кликнуть на изображении микроконтроллера в протеусе. Появится вот такое окошко
кликаем на пиктограму папки в поле Program File, выбераем hex - файл нашей прошивки и нажимаем кнопку ОК. Теперь можно запустить симуляцию нашей схемы. Для этого нажимаем кнопку "Воспроизвести" в нижнем левом углу окна Протеус.