Обзор солнечных панелей российского производства. Батареи просят солнца Новинки солнечных батарей

В 1991 году в Германии, в столице Баварии Мюнхене, открылась выставка INTERSOLAR EUROPE. На этой выставке ведущие производители систем солнечной энергетики представили свои самые новейшие разработки.

По замыслу организаторов этой выставки – компании Freiburg Wirtschaft Touristik und Messe GmbH & Co. KG – эта международная выставка была полностью посвящена использованию в различных сферах солнечных элементов фотовольтаики, а также компонентов солнечного теплоснабжения. Выставка сразу же привлекла внимание специалистов из многих стран мира. Она имела большой успех, поэтому организаторы решили сделать ее традиционной и проводить ежегодно.

На выставку, которая проходит в мае-июне, съезжаются руководители крупнейших компаний-производителей, а также компаний, использующих различные виды изделий солнечной энергетики, приезжают разработчики, инженеры, ученые, работающие в этой области.

Все хотят ознакомиться с новыми идеями, новейшими технологиями в области применения энергии солнца. Специалисты обмениваются опытом, представляют свои последние разработки. В выставочных залах можно увидеть миниатюрные зарядные устройства и самые мощные солнечные батареи, прозрачный телевизор на солнечных батареях и солнечный дом, различные приборы, устройства, машины, работающие исключительно от энергии солнца.

Эта выставка не предназначена для широкой публики, а рассчитана исключительно на профессионалов. На ее площадках проводятся семинары, конференции для специалистов, работающих в областях фотовольтаики, систем хранения энергии, возобновляемых отопительных технологий. Для презентации самых интересных разработок выделяются отдельные павильоны.

На двух последних выставках китайские и южнокорейские производители солнечных модулей представили свои новейшие изделия - панели мощностью более 300 ватт.

Солнечная батарея LG 315 N1C-G4 NeON™2

Уже из самого названия этого солнечного модуля южнокорейской компании LG следует, что заявленная мощность этого модуля составляет 315 ватт. Для компании LG очень важно выйти на рынок альтернативных источников энергии не просто в качестве одного из производителей, а в качестве одного из ведущих производителей систем фотовольтаики.

Поэтому гарантия качества продукции является одним из главных приоритетов компании. Солнечные панели разработаны и производятся с использованием самых передовых технологических процессов.

И фотопреобразователи, из которых составлена эта солнечная батарея, выполнены с наивысшими показателями качества и эффективности.

Ячейки выполнены на базе монокристаллического кремния по специальной двусторонней технологии. Благодаря своим качествам эти ячейки способны пропускать солнечные лучи, которые, отражаясь от специального покрытия тыльной стороны ячейки, способствуют повышению генерации электрического тока. То есть каждая ячейка может вырабатывать электрический ток обеими своими сторонами, повышая тем самым мощность модуля.

Модуль LG 315 N1C-G4 NeON™2. Лицевая сторона

Перед сборкой модуля каждая пластина проходит тщательнейший контроль на предмет строгого соответствия размерам (точность до микрометра) и обнаружения возможных механических повреждений. После проверки отобранные ячейки проходят очередную стадию подготовки. Для минимизации отражения солнечного света ячейки проходят стадию жидкостного травления щелочью. Ячейки с лицевой стороны ламинируются трехслойным покрытием EVA (этиленвинилацетат) и специальной отражающей пленкой с тыльной.


Модуль LG 315 N1C-G4 NeON™2. Тыльная сторона

Затем собранный модуль инкапсулируется для защиты ячеек от проникновения влаги, после чего покрывается трехмиллиметровым антибликовым противоударным стеклом. Рама модуля выполнена из анодированного профильного алюминия. На тыльной стороне устанавливается многофункциональная распределительная коробка с байпасными диодами.


Многофункциональная распределительная коробка

Благодаря такой технологии изготовления модули LG NeON ™ 2 имеют характерный черный цвет, что делает их привлекательными еще и с эстетической точки зрения.


Номинальная мощность 315 ватт.
Эффективность 19.2%

N-типа
Размеры (ДхШхТ) 1640х1000х40 миллиметров
Вес 17. 0 ± 0.5 кг
Тип разъемов МС-4
Класс защиты IP67
Стоимость модуля 30000 рублей

Солнечная батарея BenQ SunForte 333 PM096B00

В 2001 году на Тайване, в городе Синьчжу, произошло объединение двух крупных китайских компаний, работающих в области фотовольтаики. Новое объединение получило название BenQ Solar. Эта объединенная компания сразу заявила о себе, выпустив на мировые рынки высококачественные мощные гелиевые модули.

Солидная научно-исследовательская база и высокотехнологичные производственные мощности позволяют компании постоянно совершенствовать свою продукцию, внедряя самые передовые технологии. Начиная с 2013 года, компания приступила к производству гелиевых модулей по так называемой «обратно-контактной технологии.

Применение этой технологии дало возможность резко повысить мощность солнечных батарей при одновременном уменьшении размеров. Параллельно была увеличена и эффективность изделий.


Солнечная батарея SunForte PM096B00

Модуль SunForte PM096B00 – это на сегодняшний день самый мощный модуль, выпускаемый компанией BenQ Solar. Он выполнен по обратно-контактной технологии, что позволило получить выходную мощность 333 ватта при подтвержденной эффективности 20.4%.

По сравнению с традиционными модулями при равных габаритных размерах эти солнечные батареи производят значительно больше электроэнергии, что дает возможность уменьшить количество модулей и занимаемую ими площадь. Потери мощности составляют 5% за 5 лет, 13% за 25 лет эксплуатации.


Площадь, занимая обычными батареями для домашней электростанции в 4410 ватт


Площадь, занимая батареями SunForte PM096B00 для домашней электростанции в 5940 ватт

Модули сертифицированы по IEC/EN 61215 , IEC/EN 61730 и UL 1703.
Ячейки модуля ламинированы трехслойным покрытием пленки EVA, сам модуль защищен закаленным противоударным стеклом с антибликовым покрытием, толщиной 3.2 миллиметра. На тыльной стороне модуля расположена многофункциональная распределительная коробка с байпасными диодами и соединительными кабелями. Модуль заключен в профиль из анодированного алюминия, покрытого черной краской.

Основные характеристики модуля.
Номинальная мощность 333 ватта.
Эффективность 20.4%
Количество ячеек 96 (8х12) штук
Материал Монокристаллический кремний
Тип ячеек Высокоэффективные с задними проводниками
Размеры (ДхШхТ) 1559х1046х46 миллиметров
Вес 18.6
Тип разъемов ТЕ, совместимые с МС-4
Класс защиты IP67
Стоимость модуля 34000 рублей.

Солнечная батарея NeON™ 2 BiFacial

Настоящей изюминкой Мюнхенской выставки INTERSOLAR EUROPE в 2016 году стала гелиевая панель NeON™ 2 BiFacial южнокорейской компании LG, которая каждый год представляет здесь свои новейшие разработки. И в последние годы эти новинки удостаиваются высших наград выставки. Не стал исключением и 2016 год. Двусторонний гелиевый модуль NeON™ 2 BiFacial заслуженно получил очередную награду.


Гелиевая батарея компании LG NeON™ 2 BiFacial

На сегодняшний день это самый мощный модуль с повышенной эффективностью. Его прозрачные фотоэлементы собирают не только свет, попадающий на его лицевую сторону, но и отраженный, попадающий на тыльную сторону ячеек.


Обычная ячейка LG и ячейка NeON™ 2 BiFacial

Лицевая сторона этой солнечной панели при оптимальных условиях генерирует электрический ток мощностью 310 ватт. Тыльная сторона панели генерирует дополнительно до 30% мощности лицевой панели. Подтвержденная максимальная мощность модуля составляет 400 ватт! Номинальная мощность не менее 375 ватт.

Кроме того, в модуле NeON™ 2 BiFacial используется новейшая технология LG, получившая название Сello Technology™. Эта технология дала возможность перенаправить токопроводящие пути. Пути генерируемого электричества к выходу модуля были распределены на 12 тонких проводников, что позволило снизить потери электроэнергии по сравнению с традиционными схемами.


Новые технологии компании LG

Основные характеристики модуля.
Номинальная мощность 375 ватт.
Максимальная мощность 400 ватт.
Отклонение номинальной мощности 0/+3%
Эффективность 19.6%
Количество ячеек 60 (6х10) штук
Материал Монокристаллический кремний
Тип разъемов МС-4
Класс защиты IP67


Солнечная батарея NeON™ 2 BiFacial на выставке INTERSOLAR EUROPE 2016

С 31 мая по 2 июня 2017 года в Мюнхене будет проходить очередная выставка INTERSOLAR EUROPE. И нет сомнения в том, что на ней появятся очередные новинки и солнечные модули гораздо большей мощности. Наука ведь не стоит на месте.

Ученые во всем мире работают над созданием новых солнечных батарей, которые при высокой эффективности могли бы принимать различные формы и широко использоваться при строительстве в строительной индустрии. Каждая новая разработка, каждое новое достижение ученых, каждое новое поколение солнечных батарей – это пусть небольшой, но шаг вперед, это своеобразный прорыв в деле освоения альтернативных источников энергии, которые позволят снизить зависимость человечества от традиционных ископаемых энергоносителей.

Будущее фотовольтаики: три перспективных направления

1.Прозрачные солнечные батареи

Австралийская компания Dyesol работает, как она заявила, над фотоэлектрической системой будущего. Основой этой системы являются так называемые «гретцель-ячейки» - разноцветные солнечные ячейки. Своим названием они обязаны человеку, который их изобрел, – химику Майклу Гретцелю, запатентовавшему эти ячейки еще в 1992 году. Эти ячейки функционируют аналогично тому, как функционируют зеленые листья растений. Краситель, содержащийся в материале этих ячеек, реагирует на свет и создает тем самым разность потенциалов на поверхности пленки. Гретцель-ячейки почти прозрачны и могут быть использованы в различных покрытиях. Это делает их гибкими, а область применения практически не ограничена.

Разноцветные гретцель-ячейки на фасаде нового Конференц-центра в Лозане.

Самое большое преимущество этих ячеек заключается в том, что они дешевые, экологически чистые, работают даже от рассеянного света и при неблагоприятных углах падения солнечных лучей. Однако для их полноценного практического применения требуются дополнительные исследования. Дело в том, эффективность этих ячеек пока не превышает 15%, что значительно ниже аналогичных показателей у кремниевых гелиевых элементов. Тем не менее теоретические расчеты показывают, что при соответствующих технологиях эффективность гретцель-ячеек может достигнуть 31%. И тогда в самом недалеком будущем можно ожидать появление домов, стены которых покрыты краской, генерирующей электричество.

2.Фотовольтаика, воплощенная в камне

Исследовательская лаборатория немецкого университета из города Кассель под руководством профессора Хайке Клуссманна, продолжая работы, начатые Гретцелем, в своих изысканиях пошли намного дальше. В лаборатории был разработан строительный материал, сочетающий в себе свойства бетона и гелиевой ячейки.

Этот новый материал его создатели назвали DysCrete. Как поясняют исследователи, бетон в данном случае выполняет функции электрода, в то время как искусственный фотосинтез происходит в красителях, изготовленных на базе фруктовых экстрактов. В самом начале исследовательская группа экспериментировала даже с соком черной смородины, пока разработчики не нашли более эффективные красители.


Эксперименты с красными красителями и бетоном в университете Касселя.

Руководитель проекта профессор Хайке Клуссманн говорит: «Наша цель состоит в том, чтобы разработать материал, который в будущем найдет широкое применение в строительной отрасли, например, для сборных элементов при возведении зданий и сооружений, в качестве фасадных элементов, новых компонентов стен».

3.Рулонные солнечные ячейки

Тонкие, гибкие и очень дешевые. Таковы характеристики гелиевой фольги и гелиевой бумаги. Немецкая компания Heliatek выпустила пленку, толщина которой значительно меньше миллиметра. Эта пленка сохраняет свою электрическую эффективность даже в условиях плохой освещенности и высоких температур. В настоящее время серьезные исследования и эксперименты с гелиевой бумагой проводит технический университет в городе Хемниц.


Исследователи экспериментируют с бумажно-пленочными солнечными модулями.

С нормальной техникой печати светочувствительный слой может быть нанесен на бумагу. При этом в лабораториях университета уже получены достаточно обнадеживающие результаты. На сегодняшний день речь идет о напряжении в 4 вольта и коэффициенте полезного действия 1.3%. Но это только начало работ. Теоретические расчеты показывают достижение показателя эффективности, сопоставимого с аналогичными показателями кремниевых солнечных элементов. 3PV (Printed Paper Photo Voltaics) – (Печать Бумага Фото Вольтаика) – так назвали ученые свое открытие.

Взгляд в будущее: наноструктуры с переменным показателем преломления

В голландском городе Эйндховен в институте AMOLF фотоники и нанофизики полупроводников лаборатория под руководством профессора Джейми Гомеса Риваса проводит исследовательские работы, преследующие цель повышения эффективности солнечных батарей.

В основу этих исследований положена идея максимального увеличения светового потока на единицу площади. Чтобы эту идею воплотить в жизнь, исследователи обратились к тому, что уже было «изобретено» природой – глазам ночных мотыльков. Эти природные светоприемники воспринимают малейшие кванты света, благодаря чему насекомые прекрасно видят и ориентируются в кромешной темноте. По образу и подобию глаз ночного мотылька ученые попытались создать искусственную структуру, которая бы работала подобным образом.

В результате многочисленных экспериментов, сложнейших расчетов была получена многослойная наностуктура на базе фосфида галлия. Результаты своих исследований ученые опубликовали в журнале «Advanced Materials» («Современные материалы»). В опубликованном материале профессор Джейми Гомес Ривас говорит: «Впервые мы показали, что полученные нами структуры делают возможным практически полное поглощение светового потока». В слоистой структуре глаза мотылька показатель преломления света постепенно меняется от слоя к слою и увеличивается более чем в три раза, прежде чем попадет на зрительный нерв. Такого же эффекта исследователи достигли с помощью полученной ими многослойной структуры мельчайших наностержней с переменной длиной и толщиной.


Наноструктуры с переменным показателем преломления

Благодаря именно таким переменным размерам наностержней достигается плавное непрерывное изменение коэффициента преломления, что максимально увеличивает захват лучей света по всему спектру длин волн, а также сводит к минимуму эффект отражения. Теперь, как считают исследователи, наступило время перехода от научных исследований к практическому применению полученных результатов и разработке простого способа нанесения новых покрытий на солнечные батареи. Если это удастся, то за счет нанесения такого антибликового нанопокрытия эффективность солнечных батарей может быть увеличена в разы. Профессор Ривас при этом считает даже возможным разработать такое покрытие, которое позволит использовать до 99% падающего света.

Учитывая тенденцию развития солнечной электроэнергетики, неуклонное повышение эффективности гелиевых фотопреобразователей, ученые сделали достаточно оптимистический прогноз использования энергии Солнца. По этому прогнозу в 2050 году 27% всего вырабатываемого на планете электричества будет генерироваться именно солнечными электростанциями.

Солнце способно гореть миллионы лет, вырабатывая колоссальное количество тепловой и световой энергии. Не воспользоваться этим даром небес было бы откровенно глупо, а променять солнечные батареи на атомные электростанции - глупо вдвойне. Понимая это, ученые планеты Земля занялись разработкой солнечных батарей: покрытия и системы, которая смогла бы улавливать тепловую и практически бесконечную энергию Солнца и аккумулировать ее в батареях. Солнечные батареи существуют и успешно работают в различных механизмах, однако грубая электроэнергия, появившаяся еще со времен Теслы, пока применяется в первую очередь. Впрочем, экологически чистые дома нового поколения уже оснащаются покрытием из солнечных батарей, дабы не тратить лишнюю электроэнергию, а возможно и за неимением ее.

С чем вы ассоциируете слово «робот»? Скорее всего, читая это слово многие люди представляют себе голливудского терминатора, но реальность сильно отличается от фантазий. В последние годы инженеры особенно интересуются созданием роботизированных насекомых, которые благодаря своим небольшим размерам и маневренности способны незаметно летать и проводить разведку территорий. У них есть большой минус - из-за необходимости сохранить компактность и легкость, разработчики не могут оснастить их тяжелой батареей, поэтому их приходится соединять проводами к внешнему источнику питания. Кажется, эта проблема наконец-то решена.

Установленная в Австралии гигантская система хранения энергии уже помогла жителям регионов, испытывающих перебои с электроснабжением, пережить пару сложных ситуаций и сэкономила местному правительству миллионы долларов буквально в первые дни своего запуска. Теперь же компания

Использование солнечной радиации для выработки электричества – самое перспективное направление среди многих альтернативных источников. Учитывая регулярно возрастающую цену на достаточно дорогую электроэнергию, многие предприятия и жители России заинтересованы в приобретении солнечных панелей и электростанций, в том числе продуктов отечественного производителя, выпускающего качественный и недорогой товар.

Солнечные батареи, собранные на российских предприятиях, в сравнении с аналогичной зарубежной продукцией обладают следующими преимуществами :

  1. Оснащены антибликовым покрытием, позволяющим иметь повышенный КПД.
  2. Работают в широком диапазоне температур – от -50 до 70 о С.
  3. Способны выдержать удар и механическое воздействие большой силы.
  4. Полноценно работают даже в пасмурную и дождливую погоду.
  5. Стоимость продукции относительно зарубежных аналогов значительно ниже.

Недостатки российских солнечных панелей являются следствием отсутствия государственной поддержки данной отрасли и не отлаженностью процесса производства, из-за чего в ряде случаев проявляются недостатки в качестве сборки, количестве и ассортименте выпускаемой продукции.

Российские модули отличаются повышенной надежностью, что достигается применением закаленного стекла, а для предотвращения деформации – металлических каркасов. Аморфным модулям механические факторы не страшны, а благодаря своим физическим свойствам, их допустимо сворачивать в рулон и использовать в ситуациях повышенной сложности.

Подробнее про это

Российские производители солнечных панелей

В России основную часть всех солнечных модулей производят следующие заводы:

ООО Хевел , находящийся в Новочеркасске. Производит тонкопленочные гибридные и промышленных нужд. Выпускаемая продукция:

  • Модули низкого и высокого напряжения HEVEL Pramac P-серии (Р7, P7L, P7F, P7LF). Изготавливаются по тонкопленочной микроморфной технологии, способны преобразовывать в электричество видимый и инфракрасный спектр света. Цена 7500 руб.;
  • Тонкопленочные модули (110-135 Вт), изготавливаются на основе технологии аморфного кремния, за счет чего повышен КПД модулей в сравнении с изделиями предыдущих поколений. Цена 7400-7600 руб.

Читайте так же: Обзор распределительных электрических шкафов

ЗАО Телеком-СТВ , расположенный в Зеленограде, производит легкие небольшие бытовые модули на основе поли- и монокристаллических элементов и гибридные батареи следующих модификаций:

  • Монокристаллические с мощностью 18-27 Вт;
  • Монокристаллические повышенной эффективности 5-250 Вт;
  • Мультикристаллические 5-25 Вт;
  • Складные – 120 и 180 Вт;
  • Электростанции морского применения 16-215 Вт;
  • Зарядные устройства 12 Вт;
  • Мини модули 0,019-0,215 Вт.

Цена на панели составляет 1,3 $/Втпик, или от 280 руб. за модуль.

Видео с рассказом о компании и ее возможностях

ОАО Сатурн , г. Краснодар выпускает панели и электростанции на основе арсенида галлия, которые применяются в космической промышленности. Среди моделей выпускаемых солнечных батарей можно отметить следующие:

  • Панель СБ КА «Спектр-Р» (Si);
  • СБ КА «Orbcomm» (GaAs);
  • СБ КА «Ресурс ДК» (Si);
  • Модуль СБ КА «ГЛОНАСС» (Si и GaAs).


из г. Рязань производит батареи, отличающиеся мощностью, надежностью, и высоким качеством исполнения, которые подойдут для энергообеспечения дома, зарядки портативных приборов и других задач. Ассортимент выпускаемых солнечных панелей следующий:

  • Модуль Тип RZMP-220 – применяется в автономных зарядках. Ассортимент моделей: RZMP-240 (250 – 275). Цена от 14500 руб.;
  • Тип RZMP-130 – используется в автономных системах с током 12 В, и любым контроллером зарядки. Ассортимент моделей: RZMP-130 (135 – 165). Цена 14600-18400 руб.;
  • Тип RZMP «Фотоэлемент Р» – используется в сетевых и автономных устройствах с контроллерами зарядки. Ассортимент моделей: RZMP-280 (285, 290). Цена от 19 тыс. руб.
Солнечные батареи, изготовленные на основе технологии аморфного кремния, более эффективны по сравнению с монокристаллическим, что заметно проявляется при недостатке освещения, достигая разницы в производительности до 30%, но почти не реагируют на изменение освещенности, проявляя «инерционность» при восстановлении освещения, продолжая функционировать с такой же мощностью.

Зарубежные фирмы-производители

Самыми крупными фирмами, выпускающими солнечные панели и электростанции, выступают следующие фирмы:

  1. Motech – тайванская компания, имеющая производственные площади в США в виде дочерней фирмы AES Polysilicon. Начав производство с ячеек для батарей, постепенно нарастила виды выпускаемой продукции до поликристаллического кремния, пластин и готовых панелей.
  2. Yingli Green Energy – старая, вертикально интегрированная китайская компания, которая, благодаря наличию производственных мощностей по выработке поликристаллического кремния, входит в число фирм, выпускающих весь ассортимент панелей с наименьшей себестоимостью. Последней серией выпускаемых батарей стали панели «Panda».
  3. Suntech – крупная китайская фирма, внедряющая с 2010 г. вертикальную интеграцию для сокращения издержек производства и сокращения себестоимости продукции.
  4. Trina Solar – китайская фирма, производящая качественные панели, и реализующая их по минимальной цене, благодаря невысокой себестоимости продукции.
  5. Hanwha Solar One – корейский производитель. Изготавливает качественные солнечные электростанции на заводах, расположенных в Китае.
  6. Canadian Solar – фирма со штаб-квартирой в Канаде, а производством в Онтарио и Китае. Отличается большим ассортиментом и объемами производимой продукции.
  7. Solarworld – крупный немецкий производитель, нацеленный на рынки Европы и США, и не имеющий своих заводов в азиатском регионе.
  8. First Solar – американский производитель тонкопленочных панелей на основе теллур-кадмиевой технологии, которая отличается самой низкой себестоимостью батарей относительно остальных конкурентов.
  9. Sunpower – производит на территории США наиболее эффективные солнечные электростанции, но во время кризиса испытывает спад производства из-за высоких затрат.
  10. Renewable Energy Corporation – норвежская компания, выпускающая модули и поликристаллический кремний. Из-за продолжающегося кризиса перенесла производственные мощности в Сингапур.
  11. Panasonic/Sanyo производит высокоэффективную продукцию, нацеленную на рынки Японии и США.

Принципиально новый солнечный элемент, созданный в лаборатории НИТУ "МИСиС" под руководством приглашенного профессора из Университета Техаса Анвара Захидова, будет стоить в три раза дешевле лучших аналогов из кремния. А при массовом производстве разница станет 4-6-кратной. Это сулит настоящий прорыв в солнечной энергетике.

Впрочем, уже сегодня она бурно развивается, а планы вообще грандиозные. Так, Европа намерена к 2020 году довести вклад Солнца в общий объем электропотребления до 25 процентов, а к 2040 году до 40 процентов. Не менее амбициозные планы и у США: к 2020 году выработка солнечной электроэнергии в стране должна составлять 25 процентов.

Словом, ведущие страны делают ставку на Солнце. Правда, с одной оговоркой: пока она нуждается в серьезной подпорке государства. Ей предоставляются самые льготные условия для интенсивного развития.

Впрочем, высокая цена по сравнению с традиционными источниками энергии не единственный минус солнечного ватта. Само получение кремния, из которого изготавливаются солнечные батареи, создает массу проблем. Оно токсично, дорого, требует много энергии. Более того, такими батареями неудобно пользоваться: они жесткие, тяжелые и хрупкие, для установки нужны специальные прибамбасы. Словом, с ними много возни. Совсем другое дело - батарея гибкая. Ее можно раскатать как рулон на любой изогнутой поверхности. Что сразу расширяет сферы применения. Именно такие солнечные элементы впервые в России созданы учеными и инженерами МИСиС.

В них вообще нет кремния, что и позволило придать батарее необходимую гибкость, - объясняет сотрудник лаборатории Данила Саранин. - Это тандем из материала, который называется перовскит, и полупроводниковых полимеров. В отличие от дорогого кремния перовскит стоит копейки. Но главное преимущество такого тандема даже не в этом. Технология изготовления батареи из кремния очень сложна, для нее требуются глубокий вакуум и дорогостоящее оборудование. А наш метод намного проще и дешевле. Фактически солнечные элементы можно печатать на простых устройствах.

Старт перовскитной электронике дали японцы, которые впервые создали солнечный тандем с КПД 3,9 процента. В мире сразу же оценили перспективы, в гонку включилось множество ведущих зарубежных лабораторий, и сейчас КПД уже достиг 21,3 процента. Но если для кремния эта цифра почти близка к пределу его возможностей, преодолеть который не позволяют законы физики, то солнечный тандем способен на большее. Дело в том, что кремний собирает только небольшую часть видимого солнечного спектра, а тандем практически весь. Здесь и лежат перспективы роста.

Кроме того, мы намерены еще больше повысить КПД за счет своего другого ноу-хау, - говорит Саранин. - Если совсем просто, то суть в следующем. Наш элемент состоит из восьми слоев, то есть похож на сэндвич. Зачем столько? Свет не сразу превращается в электрический ток, для этого ему требуется пройти несколько каскадов преобразований. Так вот наши конкуренты соединяют все эти слои последовательно, плюс к минусу. Мы предложили иной вариант - соединять параллельно, плюс к плюсу, минус к минусу. Как показали эксперименты, это позволяет существенно поднять КПД.