Большинство современных пк являются какими машинами. Первый массовый персональный компьютер. Тенденции развития вычислительной техники

  • 1. Типы компьютеров
  • 3. Виды стационарных ПК
  • 4. Виды портативных ПК
  • 5. Ноутбуки
  • 6. Планшеты
  • 7. Карманные компьютеры и смартфоны
  • 8. Вычислительные серверы
  • 9. Суперкомпьютеры
  • 10. Другие виды

Современные компьютеры различаются по многим критериям: размерам, возможностям, а также по назначению. Прогресс движется семимильными шагами и сегодня на полках магазинов можно найти такую технику, которую еще недавно мы ассоциировали с далеким будущим. Классификация компьютеров и ее понимание помогут потребителю совершить максимально эффективную покупку, а игнорирование подобной информации приведет к необдуманным тратам, которые не вызовут ничего кроме разочарования.

Типы компьютеров

В чем же заключаются различия по типу компьютеров? Тип – это некоторая группа, обладающая схожими функциями, целями и задачами, а порой и внешним видом. Если, например, персональный компьютер – это тип, то ноутбуки или моноблоки – его виды. Несколько десятилетий назад классификация компьютеров включала в себя как современные цифровые, так и аналоговые машины, но последние канули в Лету, и мы здесь будем говорить только о цифровых устройствах.

Персональный компьютер

Это наиболее распространенный тип подобной техники, такой компьютер предполагает непосредственное взаимодействие с человеком напрямую и выдачу понятной последнему информации. Классификация персональных компьютеров в общем виде включает в себя стационарные и портативные устройства, о каждом из этих видов мы поговорим немного подробнее.

Виды стационарных ПК

Такой компьютер занимает постоянное место, например, компьютерный стол. Как правило, такие системы обладают большими вычислительными мощностями чем переносные гаджеты, ведь их не нужно переносить с места на место, и они могут себе позволить использовать более габаритные комплектующие, чья мощность выше. Выделим основные виды подобных устройств:


Виды портативных ПК

Портативный – он же переносной персональный компьютер, среди прочего имеет высокие требования к мобильности конструкции и ее весу, ведь мало кто захочет таскать за собой десятикилограммовое устройство. Такие девайсы способны работать в автономном режиме, а для его увеличения производители зачастую жертвуют производительностью системы. Этот вид ПК классифицируют следующим образом:

Ноутбуки

Это переносные компьютеры, оснащенные батареей, которая позволяет устройство работать без подключения к электрической сети. В одном корпусе такого гаджета одновременно находятся все необходимые элементы – монитор, клавиатура, процессор и прочая начинка.

Несмотря на то, что ноутбуки заметно компактнее и мобильнее стационарных компьютеров, они так же подразделяются между собой по весу и габаритам. Нетбуки – это компактные ноутбуки, которые приносят производительность в жертву легкости веса и упрощения мобильности, они отлично подходят для тех, кто любит работать не только за определенным рабочим местом, но и буквально где придется – в поезде, кафе или библиотеке.
Хотя ноутбуки не могут тягаться в производительности с десктопами, обладающими сопоставимой ценой, но для большинства функций их железа вполне хватает, а в последние годы все большую популярность стали завоевывать игровые ноутбуки, нафаршированные современнейшей начинкой, правда весят такие модели прилично.

Планшеты

Эти устройства являются чем-то средним между смартфонами и ноутбуками. Они зачастую обладают довольной большой диагональю экрана порядка 10 дюймов, но все же весят заметно меньше ноутбуков, а их производительности уже точно не хватит для современных компьютерных игр, хотя мобильные игрушки бывают не менее интересными и технологичными.
Такие устройства управляются посредством сенсорного дисплея, хотя такой форм-фактор как планшетный ноутбук тоже обладает полноценной клавиатурой. Основной задачей подобных гаджетов является веб-серфинг и просмотр видео-контента, но при необходимости с их помощью можно поработать в офисных программах, воспользоваться электронной почтой и многое другое.

Карманные компьютеры и смартфоны

Форм-фактор КПК был крайне популярен на заре нулевых, когда мобильные телефоны еще не предоставляли широких возможностей выхода в интернет, но ряд поклонников такой техники до сих пор использует карманники в бизнес-целях.
Пришедшие на смену КПК смартфоны проигрывают в производительности более тяжелым и мощным ноутбукам, зато они имеют неоспоримое достоинство – они умещаются в карман и их всегда можно иметь под рукой. Вряд ли вы получите много удовольствия от использования в качестве основной игровой или рабочей платформы, но тем не менее такая возможность тоже имеется, благодаря чему сегодня практически каждый человек имеет полноценную компьютерную среду в кармане куртки. С персональными компьютерами мы закончили, так что перейдем к следующему типу компьютеров.

Вычислительные серверы

Благодаря таким компьютерам в общем-то и обеспечивается доступ к сетям, в том числе и интернету. Все файлы и информация, которую вы наблюдаете на экране монитора при веб-серфинге, хранится на подобных серверах. Очевидно, что для таких машин огромную роль играет производительность, но есть и более важная характеристика подобных систем – надежность.

Вся информация сайтов должна быть постоянно доступной, иначе мы не сможем ей воспользоваться, а потому вычислительные серверы должны без сбоев работать весь срок своей службы. Такие типы компьютеров всегда имеют резервные копии данных, что сказывается на общей концепции их архитектуры.

В основе такой аппаратуры лежит параллельная обработка информации, потому серверы стали пионерами в развитии многопроцессорности и многоядерности, которая сегодня используется уже повсеместно, в том числе в офисных и домашник ПК. В качестве сервера по сути может выступать даже неттоп или смартфон, но их потенциал в такой роли невелик, а потому большинство современных серверов представляют собой довольно громоздкую технику, состоящую из огромного количества устройств для хранения и обработки данных.

Суперкомпьютеры

Это профессиональные машины с наиболее высокой на сегодняшний день производительностью, они используются в научных лабораториях и крупном бизнесе. Такое устройство представляет собой целый комплекс компьютерных устройств, который может занимать огромные помещения.
Каждый составной элемент подобной махины отвечает за свою конкретную задачу, подобная структуризация и векторная организация позволяют решать самые сложные проблемы, требующие невероятного объема расчетов. Если вы слышите по телевизору о сложном моделировании многоаспектных процессов, например, предсказании природных катастроф, то такой прогноз наверняка был сформирован с помощью использования суперкомпьютера.

Другие виды

Многие устройства, которые мы привыкли воспринимать опосредовано от компьютерной составляющей, например, банкоматы или игровые приставки, так же по большому счету являются компьютерами. Бытовая техника, как сложная, так и вполне примитивная вроде чайников – она тоже имеет в себе небольшие компьютеры, ответственные за выполнение ряда функций.

Роботы, которые постепенно получают все большее распространение в нашей жизни, так же являются компьютерными устройствами. Вполне вероятно, что не за горами тот день, когда компьютеры проникнут даже в человеческое тело, и будут, например, повышать наш уровень зрения или интеллекта. Надеемся, наш краткий обзор помог вам немного разобраться в хитросплетениях разветвленной структуры компьютерных устройств.

Большинство современных компьютеров состоит из двух и более уровней. Существуют машины даже с шестью уровнями (рис. 1.2). Уровень 0 - аппаратное обеспечение машины. Его электронные схемы выполняют программы, написанные наязыке уровня 1. Ради полноты нужно упомянуть о существовании еще одного уровня, расположенного ниже уровня 0. Этот уровень не показан на рис. 1.2, так как он попадает в сферу электронной техники и, следовательно, не рассматривается в этойкниге. Он называется уровнем физических устройств. На этом уровне находятся транзисторы, которые являются примитивами для разработчиков компьютеров.Объяснять, как работают транзисторы, - задача физики.

На самом нижнем уровне, цифровом логическом уровне, объекты называются вентилями. Хотя вентили состоят из аналоговых компонентов, таких как транзисторы, они могут быть точно смоделированы как цифровые средства. У каждого вентиля есть одно или несколько цифровых входных данных (сигналов, представляющих 0 или 1). Вентиль вычисляет простые функции этих сигналов, такие как И или ИЛИ. Каждый вентиль формируется из нескольких транзисторов. Несколько вентилей формируют 1 бит памяти, который может содержать 0 или 1. Биты памяти, объединенные в группы, например, по 16,32 или 64, формируют регистры. Каждый регистр может содержать одно двоичное число до определенного предела.

Из вентилей также может состоять сам компьютер.

Следующий уровень - микроархитектурный уровень. На этом уровне можно видеть совокупности 8 или 32 регистров, которые формируют локальную память и схему, называемую АЛУ (арифметико-логическое устройство). АЛУ выполняет простые арифметические операции. Регистры вместе с АЛУ формируют тракт данных, по которому поступают данные. Основная операция тракта данных состоит в следующем. Выбирается один или два регистра, АЛУ производит надними какую-либо операцию, например сложения, а результат помещается в одиниз этих регистров.

На некоторых машинах работа тракта данных контролируется особой программой, которая называется микропрограммой. На других машинах тракт данных контролируется аппаратными средствами. В предыдущих изданиях книги мы назвали этот уровень ≪уровнем микропрограммирования≫, потому что раньше он почти всегда был интерпретатором программного обеспечения. Поскольку сейчас тракт данных обычно контролируется аппаратным обеспечением, мы изменили

название, чтобы точнее отразить смысл.

На машинах, где тракт данных контролируется программным обеспечением,

микропрограмма - это интерпретатор для команд на уровне 2. Микропрограмма вызывает команды из памяти и выполняет их одну за другой, используя при этом тракт данных. Например, для того чтобы выполнить команду ADD, эта команда вызывается из памяти, ее операнды помещаются в регистры, АЛУ вычисляет сумму, а затем результат переправляется обратно. На компьютере с аппаратным контролем тракта данных происходит такая же процедура, но при этом нет программы, которая контролирует интерпретацию команд уровня 2.

Многоуровневая компьютерная организация 23

Второй уровень мы будем называть уровнем архитектуры системы команд.

Каждый производитель публикует руководство для компьютеров, которые он продает, под названием ≪Руководство по машинному языку≫ или ≪Принципы работы компьютера Western Wombat Model 100X≫ и т. п. Такие руководства содержат информацию именно об этом уровне. Когда они описывают набор машинных команд, они в действительности описывают команды, которые выполняются микропрограммой-интерпретатором или аппаратным обеспечением. Если производитель поставляет два интерпретатора для одной машины, он должен издать два руководства по машинному языку, отдельно для каждого интерпретатора.

Следующий уровень обычно гибридный. Большинство команд в его языке есть также и на уровне архитектуры системы команд (команды, имеющиеся на одном из уровней, вполне могут находиться на других уровнях). У этого уровня есть некоторые дополнительные особенности: набор новых команд, другая организация памяти, способность выполнять две и более программ одновременно и некоторые другие. При построении третьего уровня возможно больше вариантов, чем при построении первого и второго.

Новые средства, появившиеся на третьем уровне, выполняются интерпретатором, который работает на втором уровне. Этот интерпретатор был когда-то назван операционной системой. Команды третьего уровня, идентичные командам второго уровня, выполняются микропрограммой или аппаратным обеспечением, но не операционной системой. Иными словами, одна часть команд третьего уровня интерпретируется операционной системой, а другая часть - микропрограммой. Вот почему этот уровень считается гибридным. Мы будем называть этот уровень уровнем операционной системы.

Между третьим и четвертым уровнями есть существенная разница. Нижние три уровня конструируются не для того, чтобы с ними работал обычный программист.

Они изначально предназначены для работы интерпретаторов и трансляторов, поддерживающих более высокие уровни. Эти трансляторы и интерпретаторы составляются так называемыми системными программистами, которые специализируются на разработке и построении новых виртуальных машин. Уровни с четвертого и выше предназначены для прикладных программистов, решающих конкретные задачи.

Еще одно изменение, появившееся на уровне 4, - способ, которым поддерживаются более высокие уровни. Уровни 2 и 3 обычно интерпретируются, а уровни 4, 5 и выше обычно, хотя и не всегда, поддерживаются транслятором.

Другое различие между уровнями 1,2,3 и уровнями 4,5 и выше - особенность языка. Машинные языки уровней 1,2 и 3 - цифровые. Программы, написанные на этих языках, состоят из длинных рядов цифр, которые удобны для компьютеров, но совершенно неудобны для людей. Начиная с четвертого уровня, языки содержат слова и сокращения, понятные человеку.

Четвертый уровень представляет собой символическую форму одного из язы-

ков более низкого уровня. На этом уровне можно писать программы в приемлемой для человека форме. Эти программы сначала транслируются на язык уровня 1, 2 или 3, а затем интерпретируются соответствующей виртуальной или фактически существующей машиной. Программа, которая выполняет трансляцию, называется ассемблером.

Пятый уровень обычно состоит из языков, разработанных для прикладных программистов. Такие языки называются языками высокого уровня. Существуют сотни языков высокого уровня. Наиболее известные среди них - BASIC, С, C++, Java, LISP и Prolog. Программы, написанные на этих языках, обычно транслируются на уровень 3 или 4. Трансляторы, которые обрабатывают эти программы, называются компиляторами. Отметим, что иногда также используется метод интерпретации. Например, программы на языке Java обычно интерпретируются.

В некоторых случаях пятый уровень состоит из интерпретатора для такой сферы приложения, как символическая математика. Он обеспечивает данные и операции для решения задач в этой сфере в терминах, понятных людям, сведущим в символической математике.

Вывод: компьютер проектируется как иерархическая структура уровней, каждый из которых надстраивается над предыдущим. Каждый уровень представляет собой определенную абстракцию с различными объектами и операциями. Рассматривая компьютер подобным образом, мы можем не принимать во внимание ненужные нам детали и свести сложный предмет к более простому для понимания.

Набор типов данных, операций и особенностей каждого уровня называется архитектурой. Архитектура связана с аспектами, которые видны программисту. Например, сведения о том, сколько памяти можно использовать при написании программы, - часть архитектуры. А аспекты разработки (например, какая технология используется при создании памяти) не являются частью архитектуры. Изучение того, как разрабатываются те части компьютерной системы, которые видны программистам, называется изучением компьютерной архитектуры. Термины ≪компьютерная архитектура≫ и ≪компьютерная организация≫ означают в сущности одно

Развитие многоуровневых машин

В этом разделе мы кратко изложим историю развития многоуровневых машин, покажем, как число и природа уровней менялись с годами. Программы, написанные на машинном языке (уровень 1), могут сразу выполняться электронными схемами компьютера (уровень 0), без применения интерпретаторов и трансляторов. Эти электронные схемы вместе с памятью и средствами ввода-вывода формируют аппаратное обеспечение. Аппаратное обеспечение состоит из осязаемых объектов - интегральных схем, печатных плат, кабелей, источников электропитания, запоминающих устройств и принтеров. Абстрактные понятия, алгоритмы и команды не относятся к аппаратному обеспечению.

Программное обеспечение, напротив, состоит из алгоритмов (подробных последовательностей команд, которые описывают, как решить задачу) и их компьютерных представлений, то есть программ. Программы могут храниться на жестком диске, гибком диске, компакт-диске или других носителях, но в сущности программное обеспечение - это набор команд, составляющих программы, а не физические носители, на которых эти программы записаны.

В самых первых компьютерах граница между аппаратным и программным обеспечением была очевидна. Со временем, однако, произошло значительное размывание этой границы, в первую очередь благодаря тому, что в процессе развития.

Многоуровневая компьютерная организация 25 компьютеров уровни добавлялись, убирались и сливались. В настоящее время очень сложно отделить их друг от друга. В действительности центральная тема этой книги может быть выражена так: аппаратное и программное обеспечение логически

эквивалентны.

Любая операция, выполняемая программным обеспечением, может быть встроена в аппаратное обеспечение (желательно после того, как она осознана). Карен Панетта Ленц говорил; ≪Аппаратное обеспечение - это всего лишь окаменевшее программное обеспечение≫. Конечно, обратное тоже верно: любая команда, выполняемая аппаратным обеспечением, может быть смоделирована в программном обеспечении. Решение разделить функции аппаратного и программного обеспечения основано на таких факторах, как стоимость, скорость, надежность, а также частота ожидаемых изменений. Существует несколько жестких правил, сводящихся к тому, что X должен быть в аппаратном обеспечении, a Y должен программироваться.

Эти решения изменяются в зависимости от тенденций в развитии компьютерных технологий.

2.Типы компьютеров

Технологические и экономические аспекты

Степень технологического прогресса можно наблюдать, используя закон Мура, названный в честь одного из основателей и главы компании Intel Гордона Мура,который открыл его в 1965 году Закон Мура гласит, что число транзисторовна одной микросхеме удваивается каждые 18 месяцев, то есть увеличивается на60% каждый год. Размеры микросхем и даты их производства, показанные нарис. 1.6, подтверждают, что закон Мура до сих пор действует.


Многие специалисты считают, что закон Мура действует и в XXI веке, возможно, до 2020 года. Вероятно, транзисторы скоро будут состоять всего лишь из нескольких атомов, хотя достижения квантовой компьютерной техники, может быть, позволят использовать для размещения 1 бита спин одного электрона.

Еще один фактор развития компьютерных технологий - первый натановский закон программного обеспечения, названный в честь Натана Мирвольда, главного администратора компании Microsoft. Этот закон гласит: «Программное обеспечение - это газ. Оно распространяется и полностью заполняет резервуар, в котором находится» Современные электронные редакторы занимают десятки мегабайтов. В будущем, несомненно, они будут занимать десятки гигабайтов. Программное обеспечение продолжает развиваться и создает постоянный спрос на процессоры, работающие с более высокой скоростью, на большийобъем памяти, на большую производительность устройств ввода-вывода.

С каждым годом происходит стремительное увеличение количества транзисторов на одной микросхеме. Отметим, что достижения в развитии других частей компьютера столь же велики.

Подсчитать, насколько быстро происходит совершенствование жесткого диска, гораздо сложнее, поскольку тут есть несколько параметров (объем, скорость передачи данных, цена и т. д), но измерение любого из этих параметров покажет, что показатели возрастают, по крайней мере, на 50% в год.

Крупные достижения наблюдаются также и в сфере телекоммуникаций и создания сетей. Меньше чем за два десятилетия мы пришли от модемов, передающих информацию со скоростью 300 бит/с, к аналоговым модемам, работающим со скоростью 56 Кбит/с, телефонным линиям ISDN, где скорость передачи информации 2x64 Кбит/с, оптико-волоконным сетям, где скорость уже больше чем 1 Гбит/с. Оптико-волоконные трансатлантические телефонные кабели (например, ТАТ-12/13) стоят около $700 млн., действуют в течение 10 лет и могут передавать 300 000 звонков одновременно, поэтому стоимость 10-минутной межконтинентальной связи составляет менее 1 цента. Лабораторные исследования подтвердили, что возможны системы связи, работающие со скоростью 1 терабит/с (1012 бит/с) на расстоянии более 100 км без усилителей, Едва ли нужно упоминать здесь о развитии сети Интернет.

3.Семейства компьютеров

3.1. Широкий спектр компьютеров

Ричард Хамминг, бывший исследователь из Bell Laboratories, заметил, что количественное изменение величины на порядок ведет к качественному изменению.

Например, гоночная машина, которая может ездить со скоростью 1000 км/ч попустыне Невада, коренным образом отличается от обычной машины, котораяездит со скоростью 100 км/ч по шоссе Точно так же небоскреб в 100 этажей несопоставим с десятиэтажным многоквартирным домом А если речь идет о компьютерах, то тут за три десятилетия количественные показатели увеличились не в 10, а в 1 000 000 раз.

Развивать компьютерные технологии можно двумя путями: или создавать компьютеры все большей и большей мощности при постоянной цене, или выпускать один и тот же компьютер, с каждым годом снижая цену. Компьютерная промышленность использует оба эти пути, создавая широкий спектр разнообразных компьютеров. Очень приблизительная классификация современных компьютеров представлена в табл. 1.3.

В самой верхней строчке находятся микросхемы, которые приклеиваются на внутреннюю сторону поздравительных открыток для проигрывания мелодий «Happy Birthday», свадебного марша или чего-нибудь подобного. Автор идеи еще не придумал открытки с соболезнованиями, которые играют похоронный марш, но поскольку он выпустил эту идею в потребительскую сферу, вскоре можно будет ожидать появления и таких открыток. Тот, кто воспитывался на компьютерах стоимостью в миллионы долларов, воспринимает такие доступные всем компьютеры примерно так же, как доступный всем самолет. Тем не менее такие компьютеры, вне всяких сомнений, должны существовать (а как насчет говорящих мешков для мусора, которые просят вас не выбрасывать алюминиевые банки?).

Вторая строчка - компьютеры, которые помещаются внутрь телефонов, телевизоров, микроволновых печей, CD-плейеров, игрушек, кукол и т. п. Через несколько лет во всех электрических приборах будут находиться встроенные компьютеры, количество которых будет измеряться в миллиардах. Такие компьютеры состоят из процессора, памяти менее 1 Мбайт и устройств ввода-вывода, и все это на одной маленькой микросхеме, которая стоит всего несколько долларов.

Следующая строка - игровые компьютеры. Это обычные компьютеры с особой графикой, но с ограниченным программным обеспечением и почти полным отсутствием открытости, то есть возможности перепрограммирования. Примерно равны им по стоимости электронные записные книжки и прочие карманные компьютеры, а также сетевые компьютеры и web-терминалы. Все они содержат процессор, несколько мегабайтов памяти, какой-либо дисплей (может быть, даже телевизионный) и больше ничего. Поэтому они такие дешевые.

Далее идут персональные компьютеры. Именно они ассоциируются у большинства людей со словом «компьютер». Персональные компьютеры бывают двух видов: настольные и ноутбуки. Они обычно содержат несколько мегабайтов памяти, жесткий диск с данными на несколько гигабайтов, CD-ROM, модем, звуковую карту и другие периферийные устройства. Они снабжены сложными операционными системами, имеют возможность наращивания, при работе с ними используется широкий спектр программного обеспечения. Компьютеры с процессором Intel обычно называются «персональными компьютерами», а компьютеры с другими

процессорами - «рабочими станциями», хотя особой разницы между ними нет.

Персональные компьютеры и рабочие станции часто используются в качестве сетевых серверов как для локальных сетей (обычно в пределах одной организации), так и для Интернета. У этих компьютеров обычно один или несколько процессоров, несколько гигабайтов памяти и много Гбайт на диске. Такие компьютеры способны работать в сети с очень высокой скоростью. Некоторые из них могут обрабатывать тысячи поступающих сообщений одновременно.

Помимо небольших серверов с несколькими процессорами существуют системы, которые называются сетями рабочих станций (NOW - Networks of Workstations) или кластерами рабочих станций (COW - Clusters of Workstations). Они состоят из обычных персональных компьютеров или рабочих станций, связанных в сеть, по которой информация передается со скоростью 1 Гбит/с, и специального программного обеспечения, позволяющего всем машинам одновременно работать над одной задачей. Такие системы широко применяются в науке и технике. Кластеры рабочих станций могут включать в себя от нескольких компьютеров до нескольких тысяч. Благодаря низкой цене компонентов отдельные организации могут приобретать такие машины, которые по эффективности являются мини-суперкомпьютерами.

А теперь мы дошли до больших компьютеров размером с комнату, напоминающих компьютеры 60-х годов. В большинстве случаев эти системы - прямые потомки больших компьютеров серии IBM-360. Обычно они работают ненамного быстрее, чем мощные серверы, но у них выше скорость процессов ввода-вывода и обладают они довольно большим пространством на диске - 1 терабайт и более(1 терабайт=1012байт). Такие системы стоят очень дорого и требуют крупных вложений в программное обеспечение, данные и персонал, обслуживающий эти компьютеры. Многие компании считают, что дешевле заплатить несколько миллионов долларов один раз за такую систему, чем даже думать о том, что нужно будет заново программировать все прикладные программы для маленьких компьютеров.

Именно этот класс компьютеров привел к проблеме 2000 года. Проблема возникла из-за того, что в 60-е и 70-е годы программисты, пишущие программы на языке COBOL, представляли год двузначным десятичным числом с целью экономиипамяти. Они не смогли предвидеть, что их программное обеспечение будет использоваться через три или четыре десятилетия. Многие компании повторили ту же ошибку, добавив к числу года только два десятичных разряда. Автор этой книги предсказывает, что конец цивилизации произойдет в полночь 31 декабря 9999 года, когда сразу уничтожатся все COBOL-программы, написанные за 8000 лет.

Вслед за большими компьютерами идут настоящие суперкомпьютеры. Их процессоры работают с очень высокой скоростью, объем памяти у них составляет множество гигабайтов, диски и сети также работают очень быстро. В последние годы многие суперкомпьютеры стали очень похожи, они почти не отличаются от кластеров рабочих станций, но у них больше составляющих и они работают быстрее. Суперкомпьютеры используются для решения различных научных и технических задач, которые требуют сложных вычислений, например таких, как моделирование сталкивающихся галактик, разработка новых лекарств, моделирование потока воздуха вокруг крыла аэроплана.

3.2.Семейства компьютеров

В этом разделе мы дадим краткое описание трех компьютеров, которые будут использоваться в качестве примеров в этой книге: Pentium II, UltraSPARC II и picojava II.

В 1968 году Роберт Нойс, изобретатель кремниевой интегральной схемы, Гордон Мур, автор известного закона Мура, и Артур Рок, капиталист из Сан-Франциско, основали корпорацию Intel для производства компьютерных микросхем. За первый год своего существования корпорация продала микросхем всего на $3000, но потом объем продаж компании заметно увеличился.

В конце 60-х годов калькуляторы представляли собой большие электромеханические машины размером с современный лазерный принтер и весили около 20 кг.

В сентябре 1969 года японская компания Busicom обратилась к корпорации Intel с просьбой выпустить 12 несерийных микросхем для электронной вычислительной машины. Инженер компании Intel Тед Хофф, назначенный на выполнение этого проекта, решил, что можно поместить 4-битный универсальный процессор на одну микросхему, которая будет выполнять те же функции и при этом окажется проще и дешевле. Так в 1970 году появился первый процессор на одной микросхеме, процессор 4004 на 2300 транзисторах.

Заметим, что ни Intel, ни Busicom не имели ни малейшего понятия, какое грандиозное открытие они совершили. Когда компания Intel решила, что стоит попробовать использовать процессор 4004 в других разработках, она предложила купить все права на новую микросхему у компании Busicom за $60000, то есть за сумму, которую Busicom заплатила Intel за разработку этой микросхемы. Busicom сразу приняла предложение Intel, и Intel начала работу над 8-битной версией микросхемы 8008, выпущенной в 1972 году.

Компания Intel не ожидала большого спроса на микросхему 8008, поэтому она выпустила небольшое количество этой продукции. К всеобщему удивлению, новая микросхема вызвала большой интерес, поэтому Intel начала разработку еще одного процессора, в котором предел в 16 Кбайт памяти (как у процессора 8008), навязываемый количеством внешних выводов микросхемы, был преодолен. Так появился небольшой универсальный процессор 8080, выпущенный в 1974 году.

Как и PDP-8, он произвел революцию на компьютерном рынке и сразу стал массовым продуктом: только компания DEC продала тысячи PDP-8, a Intel - миллионы процессоров 8080.

В 1978 году появился процессор 8086 - 16-битный процессор на одной микросхеме. Процессор 8086 был во многом похож на 8080, но не был полностью совместим с ним. Затем появился процессор 8088 с такой же архитектурой, как и у 8086.

Он выполнял те же программы, что и 8086, но вместо 16-битной шины у него была 8-битная, из-за чего процессор работал медленнее, но стоил дешевле, чем 80861. Когда IBM выбрала процессор 8088 для IBM PC, эта микросхема стала эталоном в производстве персональных компьютеров.

Ни 8088, ни 8086 не могли обращаться к более 1 Мбайт памяти. К началу 80-х годов это стало серьезной проблемой, поэтому компания Intel разработала модель 80286, совместимую с 8086. Основной набор команд остался, в сущности, таким же, как у процессоров 8086 и 8088, но память была устроена немного по-другому, хотя и могла работать по-прежнему из-за требования совместимости с предыдущими микросхемами. Процессор 80286 использовался в IBM PC/AT и в моделях PS/2.

Он, как и 8088, пользовался большим спросом (главным образом потому, что покупатели рассматривали его как более быстрый процессор 8088).

Следующим шагом был 32-битный процессор 80386, выпущенный в 1985 году. Как и 80286, он был более или менее совместим со всеми старыми версиями. Совместимость такого рода оказывалась благом для тех, кто пользовался старым программным обеспечением, и некоторым неудобством для тех, кто предпочитал современную архитектуру, не обремененную ошибками и технологиями прошлого.

Через четыре года появился процессор 80486. Он работал быстрее, чем 80386, мог выполнять операции с плавающей точкой и имел 8 Кбайт кэш-памяти. Кэш-память используется для того, чтобы держать наиболее часто используемые слова внутри центрального процессора и избегать длительного доступа к основной (оперативной) памяти. Иногда кэш-память находится не внутри центрального процессора, а рядом с ним. 80486 содержал встроенные средства поддержки многопроцессорного режима, что давало производителям возможность конструировать системы с несколькими процессорами.

В этот момент Intel, проиграв судебную тяжбу по поводу нарушения правил наименования товаров, выяснила, что номера (например, 80486) не могут быть торговой маркой, поэтому следующее поколение компьютеров получило название Pentium (от греческого слова ЛЕУТЕ - пять). В отличие от 80486, у которого был один внутренний конвейер, Pentium имел два, что позволяло работать ему почти в два раза быстрее (конвейеры мы рассмотрим подробно в главе 2).

Когда появилось следующее поколение компьютеров, те, кто рассчитывал на название Sexium (sex по-латыни - шесть), были разочарованы. Название Pentium стало так хорошо известно, что его решили оставить, и новую микросхему назвали Pentium Pro. Несмотря на столь незначительное изменение названия, этот процессор очень сильно отличался от предыдущего. У него была совершенно другая внутренняя организация, и он мог выполнять до пяти команд одновременно.

Еще одно нововведение у Pentium Pro - двухуровневая кэш-память. Процессор содержал 8 Кбайт памяти для часто используемых команд и еще 8 Кбайт для часто используемых данных. В корпусе Pentium Pro рядом с процессором (но не на самой микросхеме) находилась другая кэш-память в 256 Кбайт.

Вслед за Pentium Pro появился процессор Pentium II, по существу такой же, как и его предшественник, но с особой системой команд для мультимедиа-задач (ММХ - multimedia extensions). Эта система команд предназначалась для ускорения вычислений, необходимых при воспроизведении изображения и звука. При наличии ММХ специальные сопроцессоры были не нужны. Данные команды имелись в наличии и в более поздних версиях Pentium, но их не было в Pentium Pro.

Таким образом, компьютер Pentium II сочетал в себе функции Pentium Pro с мультимедиа-командами.

В начале 1998 года Intel запустил новую линию продукции под названием Celeron. Celeron имел меньшую производительность, чем Pentium II, но зато стоилдешевле. Поскольку у компьютера Celeron такая же архитектура, как у Pentium II, мы не будем обсуждать его в этой книге. В июне 1998 года компания Intel выпустила специальную версию Pentium II - Хеоп. Он имел кэш-память большего объема, его внутренняя шина работала быстрее, были усовершенствованы средства поддержки многопроцессорного режима, но во всем остальном он остался обычным Pentium II, поэтому мы его тоже не будем обсуждать. Компьютеры семейства Intel показаны в табл. 1.4.

Все микросхемы Intel совместимы со своими предшественниками вплоть до

процессора 8086. Другими словами, Pentium II может выполнять программы, написанные для процессора 80861. Совместимость всегда была одним из главных требований при разработке новых компьютеров, чтобы покупатели могли продолжать работать со старым программным обеспечением и не тратить деньги на новое. Конечно, Pentium II во много раз сложнее, чем 8086, поэтому он может выполнять многие функции, которые не способен выполнять процессор 8086. Все эти постепенные доработки в каждой новой версии привели к тому, что архитектура Pentium II не так проста, как могла бы быть, если бы разработчикам процессора Pentium II предоставили 7,5 млн транзисторов и команд, чтобы начать все заново.

Интересно, что хотя закон Мура раньше ассоциировался с числом битов в памяти компьютера, он в равной степени применим и по отношению к процессорам.

Если напротив даты выпуска каждой микросхемы поставить число транзисторов на этой микросхеме (количество транзисторов показано в табл. 1.4), мы увидим, что закон Мура действует и здесь. График показан на рис.1.7.

В 70-х годах во многих университетах была очень популярна операционная система UNIX, но персональные компьютеры не подходили для этой операционной системы, поэтому любителям UNIX приходилось работать на мини-компьютерах с разделением времени, таких как PDP-11 и VAX. Энди Бехтольсхайм, аспирант Стэнфордского университета, был очень расстроен тем, что ему нужно посещать компьютерный центр, чтобы работать с UNIX. В 1981 году он разрешил эту проблему, самостоятельно построив персональную рабочую станцию UNIX из стандартных частей, имеющихся в продаже, и назвал ее SUN-1 (Stanford University Network – сеть Стэнфордского университета).

На Бехтольсхайма скоро обратил внимание Винод Косла, 27-летний индиец, который горел желанием годам к тридцати стать миллионером и уйти от дел. Косла предложил Бехтольсхайму организовать компанию по производству рабочих станций Sun. Он нанял Скота Мак-Нили, другого аспиранта Стэнфордского университета, чтобы тот возглавил производство. Для написания программного обеспечения они наняли Билла Джоя, главного создателя системы UNIX. В 1982 году они вчетвером основали компанию Sun Microsystems. Первый компьютер компании, Sun-1, был оснащен процессором Motorola 68020 и имел большой успех, как и последующие модели Sun-2 и Sun-З, которые также были сконструированы с использованием микропроцессоров Motorola. Эти машины были гораздо мощнее, чем другие персональные компьютеры того времени (отсюда и название «рабочая станция»), и изначально были предназначены для работы в сети. Каждая рабочая станция Sun была оснащена сетевым адаптером Ethernet и программным обеспечением TCP/IP для связи с сетью ARPANET, предшественницей Интернета.

В 1987 году компания Sun, которая к тому времени продавала рабочих станций на полмиллиарда долларов в год, решила разработать свой собственный процессор, основанный на новом революционном проекте калифорнийского университета в Беркли (RISC II). Этот процессор назывался SPARC (Scalable ProcessorARCitecture - наращиваемая архитектура процессора). Он был использован при производстве рабочей станции Sun-4. Через некоторое время все рабочие станции компании Sun стали производиться на основе этого процессора.

В отличие от многих других компьютерных компаний, Sun решила не заниматься производством процессоров SPARC. Вместо этого она предоставила патент на их изготовление нескольким предприятиям, надеясь, что конкуренция между ними повлечет за собой повышение качества продукции и снижение цен. Эти предприятия выпустили несколько разных микросхем, основанных на разных технологиях, работающих с разной скоростью и отличающихся друг от друга по стоимости.

Микросхемы назывались MicroSPARC, HyperSPARK, SuperSPARK и TurboSPARK. Мало чем отличаясь друг от друга, все они были совместимы и могли выполнять одни и те же программы, которые не приходилось изменять.

Компания Sun всегда хотела, чтобы разные предприятия поставляли для SPARK составные части и системы. Нужно было построить целую индустрию, только в этом случае можно было конкурировать с компанией Intel, лидирующей на рынке персональных компьютеров. Чтобы завоевать доверие компаний, которые были заинтересованы в производстве процессоров SPARC, но не хотели вкладывать средства в продукцию, которую будет подавлять Intel, компания Sun создала промышленный консорциум SPARC International для руководства развитием будущих версий архитектуры SPARC. Важно различать архитектуру SPARC, которая представляет собой набор команд, и собственно выполнение этих команд. В этой книге мы будем говорить и об общей архитектуре SPARC, и о процессоре, используемом в рабочей станции SPARC (предварительно обсудив процессоры в третьей и четвертой главах).

Первый SPARC был 32-битным и работал с частотой 36 МГц. Центральный процессор назывался Ш (Integer Unit - процессор целочисленной арифметики) и был весьма посредственным. У него было только три основных формата команд и в общей сложности всего 55 команд. С появлением процессора с плавающей точкой добавилось еще 14 команд. Отметим, что компания Intel начала с 8- и 16-битных микросхем (модели 8088, 8086, 80286), а уже потом перешла на 32-битные (модель 80386), a Sun, в отличие от Intel, сразу начала с 32-битных.

Грандиозный перелом в развитии SPARC произошел в 1995 году, когда была разработана 64-битная версия (версия 9) с адресами и регистрами по 64 бит. Первой рабочей станцией с такой архитектурой стал UltraSPARC I, вышедший в свет в 1995 году. Он был полностью совместим с 32-битными версиями SPARC, хотя сам был 64-битным.

В то время как предыдущие машины работали с символьными и числовыми данными, UltraSPARC с самого начала был предназначен для работы с изображениями, аудио, видео и мультимедиа вообще. Среди нововведений, помимо 64-битной архитектуры, появились 23 новые команды, в том числе команды для упаковки и распаковки пикселов из 64-битных слов, масштабирования и вращения изображений, перемещения блоков, а также для компрессии и декомпрессии видео в реальном времени. Эти команды назывались VIS (Visual Instruction Set) и предназначались для поддержки мультимедиа. Они были аналогичны командам ММХ.

UltraSPARC предназначался для web-серверов с десятками процессоров и физической памятью до 2 Тбайт (терабайт, 1Тбайт = 1012 байтов). Тем не менее некоторые версии UltraSPARC могут использоваться и в ноутбуках.

За UltraSPARC I последовали UltraSPARC II и UltraSPARC III. Эти модели отличались друг от друга по скорости, и у каждой из них появлялись какие-то новые особенности. Когда мы будем говорить об архитектуре SPARC, мы будем иметь в виду 64-битную версию компьютера UltraSPARC II (версии 9).

Язык программирования С придумал один из работников компании Bell Laboratories Деннис Ритчи. Этот язык предназначался для работы в операционной системе UNIX. Из-за большой популярности UNIX С скоро стал доминирующим языком в системном программировании. Через несколько лет Бьярн Строуструп, тоже из компании Bell Laboratories, добавил к С некоторые особенности из объектно-ориентированного программирования, и появился язык C++, который также стал очень

популярным.

В середине 90-х годов исследователи в Sun Microsystems думали, как сделать

так, чтобы пользователи могли вызывать двоичные программы через Интернет и загружать их как часть web-страниц. Им нравился C++, но он не был надежным в том смысле, что программа, посланная на некоторый компьютер, могла причинить ущерб этому компьютеру. Тогда они решили на основе C++ создать новый язык программирования Java, с которым не было бы подобных проблем. Java - объектно-ориентированный язык, который применяется при решении различных прикладных задач. Поскольку этот язык прост и популярен, мы будем использовать его для примеров.

Поскольку Java - всего лишь язык программирования, можно написать компилятор, который будет преобразовывать его для Pentium, SPARC или любого другого компьютера. Такие компиляторы существуют. Однако этот язык был создан в первую очередь для того, чтобы пересылать программы между компьютерами по Интернету и чтобы пользователям не приходилось изменять их. Но если программа на языке Java компилировалась для SPARC, то когда она пересылалась по Интернету на Pentium, запустить там эту программу было уже нельзя.

Чтобы разрешить эту проблему, компания Sun придумала новую виртуальную машину JVM (J a v a Virtual Machine - виртуальная машина Java). Память у этой машины состояла из 32-битных слов, машина поддерживала 226 команд. Большинство команд были простыми, но выполнение некоторых довольно сложных команд требовало большого количества циклов обращения к памяти.

В компании Sun разработали компилятор, преобразующий программы на языке Java на уровень JVM, и интерпретатор JVM для выполнения этих программ.

Этот интерпретатор был написан на языке С и, значит, мог использоваться практически на любом компьютере. Следовательно, чтобы компьютер мог выполнять двоичные программы на языке Java, нужно было всего лишь достать интерпретатор JVM для соответствующего компьютера (например, для Pentium II с системой Windows 98 или для SPARC с системой UNIX) вместе с определенными программами поддержки и библиотеками. Кроме того, большинство браузеров в Интернете содержат интерпретатор JVM, что позволяет легко запускать апплеты (небольшие двоичные программы на Java, связанные со страницами World Wide Web).

Большинство этих апплетов поддерживают

Основу ПК составляет системный блок, в котором размещены:

    микропроцессор (МП);

    блок оперативного запоминающего устройства (ОЗУ);

    постоянного запоминающего устройства (ПЗУ); долговременной памяти на жёстком магнитном диске (Винчестер);

    устройства для запуска компакт-дисков (CD) и дискет (НГМД).

Там же находятся платы: сетевая, видеопамяти, обработки звука, модем (модулятор-демодулятор), интерфейсные платы, обслуживающие устройства ввода-вывода: клавиатуры, дисплея, "мыши", принтера и др.

Все функциональные узлы ПК связаны между собой через системную магистраль, представляющую из себя более трёх десятков упорядоченных микропроводников, сформированных на печатной плате.Микропроцессор служит для обработки информации: он выбирает команды из внутренней памяти (ОЗУ или ПЗУ), расшифровывает и затем исполняет их, производя арифметические и логические операции. Получает данные из устройства ввода и посылает результаты на устройства вывода. Он вырабатывает также сигналы управления и синхронизации для согласованной работы его внутренних узлов, контролирует работу системной магистрали и всех периферийных устройств. Упрощённая схема микропроцессора представлена на нижней схеме (выделена штриховой линией с надписью ЦП). В его состав входят: арифметико-логическое устройство (АЛУ), выполняющее арифметические и логические операции над двоичными числами; блок регистров общего назначения (РОН), используемых для временного хранения обрабатываемой информации (R0 - R5), указателя стека (R6) и счётчика команд (R7); устройство управления (УУ), определяющее порядок работы всех узлов микропроцессора. Одной из важнейших характеристик микропроцессора является его разрядность, определяемая числом разрядов АЛУ и РОН. Современные микропроцессоры имеют 16- , 32- и 64-разрядную длину двоичного числа, а также до 200 и более различных внутренних команд.

11. Основными функциональными характеристиками персонального компьютера являются:

1. производительность, быстродействие, тактовая частота. Производительность современных ЭВМ измеряют обычно в миллионах операций в секунду;

2. разрядность микропроцессора и кодовых шин интерфейса. Разрядность - это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при прочих равных условиях, будет больше и производительность ПК;

3. типы системного и локальных интерфейсов. Разные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды;

4. емкость оперативной памяти. Емкость оперативной памяти измеряется обычно в Мбайтах. Многие современные прикладные программы с оперативной памятью, имеющей емкость меньше 16 Мбайт, просто не работают либо работают, но очень медленно;

5. емкость накопителя на жестких магнитных дисках (винчестера) . Емкость винчестера измеряется обычно в Гбайтах;

6. тип и емкость накопителей на гибких магнитных дисках. Сейчас применяются накопители на гибких магнитных дисках, использующие дискеты диаметром 3,5 дюйма, имеющие стандартную емкость 1,44 Мб;

7. наличие, виды и емкость кэш-памяти. Кэш-память - это буферная, недоступная для пользователя быстродействующая память, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в более медленно действующих запоминающих устройствах. Наличие кэш-памяти емкостью 256 Кбайт увеличивает производительность персонального компьютера примерно на 20%;

8. тип видеомонитора и видеоадаптера;

9. наличие и тип принтера;

10. наличие и тип накопителя на компакт дисках CD-ROM;

11. наличие и тип модема;

12. наличие и виды мультимедийных аудиовидео-средств;

13. имеющееся программное обеспечение и вид операционной системы;

14. аппаратная и программная совместимость с другими типами ЭВМ. Аппаратная и программная совместимость с другими типами ЭВМ означает возможность использования на компьютере, соответственно, тех же технических элементов и программного обеспечения, что и на других типах машин;

15. возможность работы в вычислительной сети;

16. возможность работы в многозадачном режиме. Многозадачный режим позволяет выполнять вычисления одновременно по нескольким программам (многопрограммный режим) или для нескольких пользователей (многопользовательский режим) ;

17. надежность. Надежность - это способность системы выполнять полностью и правильно все заданные ей функции;

18. стоимость;

19. габаритами вес.

12 . Виды портативных персональных компьютеров . Сегодня на рынке существуют портативные системы трех основных категорий: laptop, notebook и subnotebook. Несколько в стороне стоят КПК (карманные персональные компьютеры. Определение таких систем не очень четкие, основаны они главным образом на размере и весе; эти характеристики имеют прямое отношение к возможностям системы, поскольку, чем больше корпус, тем более компонентов в него можно вложить.Поэтому неудивительно, что некоторые производители портативных компьютеров иногда "неверно называют" категории систем, выпускаемых - лэптоп называют ноутбуком или наоборот. Ниже рассмотрим все стандарты портативных систем.

Лэптоп . Так назывались первые портативные компьютеры. Сейчас лэптопами именуют самые портативные системы. Типичный ноутбук весит более 3 кг и имеет размер более 23 30 5 см. Появление на современном рынке экранов больших размеров привело к увеличению размеров (кроме высоты, которая в отдельных моделях уменьшилась) портативных компьютеров. Будучи когда-то наименьшими компьютерами, сейчас ноутбуки становятся суперсовременными машинами, по возможностям и производительности сравнимыми с настольными системами.Пример - портативный Pentium 4, собранный с использованием комплектующих обычных настольных компьютеров. Преимущества такой системы в уменьшении цены по сравнению с полностью функционально аналогичного ноутбука, повышения удобства в работе. Ограничения в использовании – условная мобильность, такая система более предназначена для максимального удобства рабочего стола менеджера.Во многих случаях ноутбуки представляются производителями как замена настольных систем, или как переносные мультимедийные системы для презентаций ("Дорожные системы"). Большие активно-матричные дисплеи с объемом оперативной памяти от 32 до 512 Мбайт, жесткие диски емкостью от 20 Гбайт и более, накопители CD-ROM и DVD, встроенные акустические системы, средства коммуникации и порты для подключения внешнего дисплея, накопителей и звуковых систем - вот те компоненты, которые включены в многих современных лэптоп-систем. Кроме того, некоторые "продвинутые" модели также содержат комбинированный дисковод DVD-CD/RW и устройство беспроводной связи Wi-Fi.Большинство лэптопов поставляются с стыковочным оборудованием, позволяет применять их в качестве "домашней базы" - подключаться к компьютерной сети и использовать полноразмерные монитор и клавиатуру. Для человека, постоянно разъезжает, это гораздо лучше, чем иметь отдельную настольную портативную систему, что требует постоянной синхронизации данных. Хотя, конечно, за все приходится платить: стоимость самых мощных лэптопов сейчас более чем вдвое превышает стоимость аналогичных настольных систем.

Нетбук . Целью разработчиков портативных систем этого типа были создание компьютера, по всем параметрам меньше, чем ноутбук. Нетбук весит 2-3 кг, имеет меньший, чем у ноутбука, дисплей с более низкой разрешающей способностью и мультимедиа-возможностями (но не стоит считать эти машины слабыми). Жесткие диски и память у многих из них никак не меньше, чем ноутбуки, а большинство даже содержат CD-ROM и звуковые адаптеры. Разработаны не как замена, а скорее как дополнение к настольной системы, нетбуки вряд ли поражают своими возможностями, но они полнофункциональными дорожными компьютерами. Для нетбуков существует большой выбор дополнительных устройств и аппаратных конфигураций, поскольку они предназначены для широкого круга пользователей - от профессионалов до торговых агентов, которые используют самый минимум функций.

Субноутбук . Субноутбук значительно меньше своих собратьев. Он прекрасно подойдет путешественнику, которому не нужны расширенные возможности больших и слишком тяжелых машин, но необходимая функциональность настольного компьютера в дороге и возможности подключения к офисной сети.В конструкции субноутбуков обычно отсутствует внутренний дисковод гибких дисков, но иногда есть разъем для подключения внешнего дисковода. Накопителей CD-ROM и других громоздких компонентов в нем также нет, однако есть сравнительно большой высококачественный дисплей, значительный дисковое пространство и полноразмерная (по стандартам портативных ПК) клавиатура для этих машин не редкость. Некоторые модели субноутбуков (например, IBM THINKPAD 570) оснащены специальным модулем, с помощью которого можно подключить "отсутствует оборудования ", например, накопитель CD-ROM или DVD.Существуют субноутбуки, предназначенные специально для "крутых" людей (Таких, как высший управленческий персонал), которые используют в основном электронную почту и средства планирования и при этом хотят иметь легкую, изящную и впечатляющую систему. Стоимость таких систем находится на уровне (Или выше) лэптопов. Примером может быть субноутбук Acer Pentium III (Частота процессора 1,13 МГц) или Acer Pentium IV (частота процессора 1,2 МГц) с объемом жесткого диска 20 ГБ приблизительным размерам 25 15 2 см.

Палмтопы . Эта категория появилась на рынке сравнительно недавно. Название этих компьютеров вполне соответствует их размерам - они могут поместиться на ладони. К этой категории портативных систем не относятся сетевые персональные помощники или системы под управлением Windows CE. Палмтопы – это полно функциональный компьютер с операционной системой как в настольных моделей. Клавиатура палмтопы зачастую представляет собой основной набор клавиш, причем меньшего размера. Поэтому такие компьютеры наилучшим подходят для отправки электронной почты или факса в пути, для решения других небольших задач.Типичным представителем палмтопы можно назвать серию компьютеров Libretto, выпускаемых компанией Toshiba (по более современной классификации их относят к субноутбуков). Такой компьютер весит около 700 граммов, имеет экран 8 дюймов, а в небольшую клавиатуру интегрирован устройство указания trakpoint. Такой палмтопы уступает по производительности другим типам портативных компьютеров, но имеет одно преимущество - на нем можно установить операционную систему Windows и все необходимые приложения.

Карманные ПК . Это компьютеры и органайзеры, которые могут разместиться управляемые системами Palm OC, Windows CE, Pocket PC, EPOC. Они могут быть клавиатурными (Handheld PC) и без клавиатурными (Palm size PC). Кроме того, существуют смартфоны - сочетание карманного компьютера и мобильного телефона. Такие компьютеры не являются полноценными в том смысле, что для обмена данным требуют подключения к стационарной машиной.Технологии мобильных компьютерных систем. Времени, когда слово "Портативный" означало "кейс с ручкой", портативные компьютеры, как и их настольные предшественники, очень изменились. Сегодняшние портативные системы могут конкурировать с настольными почти во всем. Многие компании предлагают их мобильным пользователям как основные компьютеры.

Компьютер в переводе с английского языка (computer) переводится, как «вычислитель». Представляет собой устройство, выполняющее определённую, заранее заданную последовательность операций. Заданная последовательность операций называется программным обеспечением. Компьютеры имеют очень широкий спектр применения. Их используют для любых, сложных вычислений, для накопления, обработки, хранения, приёма и передачи информации, управление станками и механизмами на производстве, для создания графических и видеоизображений с возможностью их обработки и т. п.

Термин «компьютер»

Строго говоря, термин «компьютер» очень объёмный, так как принцип его работы может быть основан на использовании самой разной рабочей среды и компонентов. Компьютер может быть электронным, механическим, квантовым, оптическим и т. п., работая за счёт движения фотонов, квантов, механических частей и прочее. Кроме этого, функционально, компьютеры делятся на два типа – электронные и аналоговые (механические).

Кстати сказать, слово компьютер было впервые введено в 1887 году в оксфордский словарь английского языка. Составители этого учебника понимали слово «компьютер», как механическое устройство для вычислений. Лишь значительно позже, в 1946 году, словарь дополнили терминами, чётко описывающими механический, аналоговый и цифровой компьютер.

Сегодня понятие компьютер значительно сузилось, так как многие устройства устарели и больше не используются в работе, уменьшив тем самым существующую номенклатуру этих устройств.

Быстродействие компьютеров

Быстродействие компьютера напрямую зависит от его вычислительной мощности, то есть скорости выполнения определённых операций за единицу времени. Называется эта величина – «флопс ».

На практике, скорость сильно зависит от многих дополнительных условий: типа задачи, которая выполняется на компьютере, частого обмена данными между составляющими системы и т. п. Поэтому в качестве этого параметра принимают пиковую скорость вычислений – некое гипотетическое число, которое характеризует максимально возможную скорость выполнения операций.

Например, к суперкомпьютерам относят устройства, способные выполнять вычисления со скорость более 10 терафлопсов (это десять триллионов флопсов). Для сравнения, средний бытовой, персональный компьютер работает со скоростью приблизительно 0.1 терафлопса.

Для того чтобы оценить практическое быстродействие компьютерных устройств разработаны специальные тесты (на компьютерном сленге их часто называют «бенчмарки ») в основу которых положены специальные математические вычисления. Производительность персональных компьютеров , оценивают, как правило, с точки зрения всех составляющих его компонентов для получения итоговой, усреднённой оценки его быстродействия.

Виды современных компьютеров

Как уже было отмечено выше, в зависимости от своей конструкции, технических параметров, применения, все компьютеры можно условно разделить на несколько типов:

Электронно-вычислительные машины (ЭВМ)

По сути, это устройство представляет собой совокупность целого комплекса средств, где все составляющие его элементы выполнены при помощи электронных элементов. Основным назначением такого устройства является выполнение различных расчётов и решение задач вычислительного или информационного плана.

На сегодняшний день этот термин используется для обозначения конкретной аппаратной реализации устройства и как правовой термин в юридических документах. Кроме этого, это понятие применяют, как для обозначений компьютерной техники, выпускавшейся в 1950–1990 годах, так и для современных больших электронно-вычислительных устройств, чтобы отграничить их от компьютеров персонального типа.

Персональный компьютер

Недорогое, универсальное, достаточно компактное устройство, предназначенное для работы на нём одиночного пользователя дома или в офисе и выполнения различных, индивидуальных задач – вычислений, набора текстов, просмотра видео, прослушивания музыки и прочее. Именно благодаря такой универсальности и ценовой доступности, персональные компьютеры и получили такое широкое распространение.

Наибольшую известность получили компьютеры фирмы Apple и так называемые IBM-совместимые устройства , которые на сегодняшний день занимают львиную долю всего рынка ПК. Широкую популярность IBM обеспечила более низкая цена при почти равных возможностях.

До последнего времени, эти устройства не имели никакой совместимости между собой – ни аппаратной, ни программной. На сегодняшний день существует специальное программное обеспечение («эмуляторы»), делающее возможным запуск программ (с ограничением) от Apple на IBM-совместимых компьютерах и наоборот.

Все персональные компьютеры, в свою очередь, можно разделить на несколько типов:

Настольные ПК .

Главная > Лекция

Лекция 4.

Устройство ПК

Классификация компьютеров.

Весь спектр современных вычислительных систем можно разделить на три больших класса: мини-ЭВМ (включая персональные компьютеры), мейнфреймы, суперкомпьютеры. В настоящее время эти классы разнятся не столько по внешнему виду, сколько по функциональным возможностям.Существование различных типов компьютеров определяется различием задач, для решения которых они предназначены. С течением времени появляются новые типы задач, что приводит к появлению новых типов компьютеров. Поэтому приведенное ниже деление очень условно.ПК. Современные персональные компьютеры имеют практически те же характеристики, что и мини-ЭВМ восьмидесятых годов: 32- и 64-разрядную архитектуру и шинную организацию системы. В настоящее время класс мини-ЭВМ чрезвычайно разнообразен: от ноутбуков и палмтопов до мощных серверов для систем масштаба предприятия. Генетическими признаками этого класса машин является шинная организация системы, при которой все устройства «нанизываются» на общую магистраль, и стандартизация аппаратных и программных средств. Мейнфреймы - универсальные электронно-вычислительные машины общего назначения. Мейнфреймы активно используются в финансовой сфере, оборонном комплексе и занимают от 10 до 15% компьютерного рынка.Суперкомпьютеры -- специальный тип компьютеров, создающихся для решения предельно сложных вычислительных задач (составления прогнозов, моделирования сложных явлений, обработки сверхбольших объемов информации). Принцип работы суперкомпьютера заключается в том, что он способен выполнять несколько операций параллельно.Одной из ведущих компаний мира в производстве суперкомпьютеров является компания Cray Research. Ее основатель, человек-легенда Сеймур Крей, уже в середине 70-х годов построил компьютер Cray-1 , который поражал мир своим быстродействием: десятки и даже сотни миллионов арифметических операций в секунду.Как известно, скорость распространения любого сигнала не превышает скорости света в вакууме -- 300 тысяч километров в секунду, или 300 миллионов метров в секунду. Если компьютер выполняет 300 миллионов операций в секунду, то за время выполнения одной операции сигнал успевает пройти не более одного метра. Отсюда следует, что расстояние между частями суперкомпьютера, выполняющими одну операцию, не может превосходить нескольких десятков сантиметров. И действительно, суперкомпьютеры компании Cray были очень компактны и выглядели как "бублик" диаметром менее двух метров. Этот "бублик" занимался только вычислениями. Для общения с человеком и доставки данных для вычислений к "бублику" были подключены несколько достаточно производительных обычных компьютеров.Кроме этого следует выделить еще два типа компьютеров: специализированные компьютеры-серверы; встроенные компьютеры-невидимки (микропроцессоры). Кроме привычных компьютеров с клавиатурами, мониторами, дисководами, сегодняшний мир вещей наполнен компьютерами-невидимками. Микропроцессор представляет собой компьютер в миниатюре. Кроме обрабатывающего блока, он содержит блок управления и даже память (внутренние ячейки памяти). Это значит, что микропроцессор способен автономно выполнять все необходимые действия с информацией. Многие компоненты современного персонального компьютера содержат внутри себя миниатюрный компьютер. Массовое распространение микропроцессоры получили и в производстве, там где управление может быть сведено к отдаче ограниченной последовательности команд.Микропроцессоры незаменимы в современной технике. Например, управление современным двигателем -- обеспечение экономии расхода топлива, ограничение максимальной скорости движения, контроль исправности и т. д. -- немыслимо без использования микропроцессоров. Еще одной перспективной сферой их использования является бытовая техника -- применение микропроцессоров придает ей новые потребительские качества.Настольные ПК, поддерживающие одно рабочее место, составляют наиболее многочисленную группу персональных компьютеров, или микро-ЭВМ. До появления портативных ПК слова «настольный» и «персональный» были синонимами. Настольные ПК еще называют компьютерами для рабочего места или офисными компьютерами (хотя в настоящее время офисные ПК чаще называют рабочими станциями). Подавляющее большинство домашних компьютеров также являются настольными. И те, и другие имеют практически одинаковые характеристики: 32- и 64-разрядную архитектуру и шинную организацию системы, применяют стандартизованные аппаратные и программные средства. Большинство настольных ПК относятся к двум большим группам: IBM-совместимые ПК и ПК Apple Macintosh. Компьютеры из этих групп не совместимы друг с другом, т. е. полностью или частично не способны использовать аппаратные средства и программные продукты друг друга.



Настольные ПК имеют системный блок, содержащий источник питания, материнскую плату с процессором, жесткий диск, дисководы, монитор, клавиатуру, мышь. К ним могут подключаться факс, модем и другие внешние устройства, например аудиоколонки. В некоторых моделях домашних ПК системный блок с монитором собраны в едином корпусе (Apple iMac, Acer Aspire, Compaq Presario). В 1981 году американская фирма IBM развернула производство персональных компьютеров IBM PC, работающих под управлением операционной системы DOS, разработанной специалистами фирмы Microsoft. Компьютеры IBM PC пользовались коммерческим успехом, и многие фирмы-производители электронной техники наладили выпуск клонов IBM PC. Так появился класс IBM-совместимых компьютеров, которые могли использовать большинство внешних устройств и программ, предназначенных для IBM PC. Принцип совместимости обеспечил значительную экономию средств и времени при модернизации старых и создании новых компьютеров. Все IBM-совместимые компьютеры могут использовать операционную систему Microsoft DOS (PS-DOS у IBM, MS-DOS у ПК других производителей) или Windows и процессоры Intel (или совместимые с ними). Альтернативой IBM-совместимым персональным компьютерам являются компьютеры Apple Macintosh. К

омпьютеры принимают, перерабатывают, хранят и выдают информацию. Действиями компьютера управляет оператор. Длинные последовательности инструкций заранее фиксируются в программах. Вычислительные операции совершает центральный процессор. Согласно принципам работы ЭВМ, сформулированным в 1945 году американским математиком Джоном фон Нейманом, центральный процессор состоит из двух частей. Устройство управления воспринимает команды программ и организует их выполнение. Арифметико-логическое устройство выполняет вычисления. Данные хранятся в различных запоминающих устройствах. Для долговременного хранения информации используются постоянные носители, которые служат для ввода данных и вывода результатов работы. Для хранения выполняемых в данный момент программ и промежуточных данных используется оперативная память, которая работает значительно быстрее постоянных носителей. Аппаратным обеспечением являются все внутренние компоненты и внешние устройства компьютера - интегральные микросхемы (в том числе микропроцессоры), дисководы, системные и интерфейсные платы, мониторы, принтеры, манипуляторы, модемы и т.д. Программное обеспечение представляет собой наборы инструкций для ЭВМ, необходимые для управления работой компьютера и выполнения с его помощью полезных задач.Главной особенностью конструкции компьютера является программный принцип работы.Принцип программы, хранимой в памяти компьютера, считается важнейшей идеей современной компьютерной архитектуры. Суть идеи заключается в том, что 1) программа вычислений вводится в память ЭВМ и хранится в ней наравне с исходными числами; 2) команды, составляющие программу, представлены в числовом коде по форме ничем не отличающемся от чисел.

Внутренние и внешние устройства.

Под архитектурой компьютера понимается его логическая организация, структура, ресурсы, т. е. средства вычислительной системы, которые могут быть выделены процессу обработки. Архитектура современных ПК основана на магистрально-модульном принципе . Модульный принцип позволяет потребителю самому подобрать нужную ему конфигурацию компьютера и производить при необходимости его модернизацию. Модульная организация системы опирается на магистральный (шинный) принцип обмена информации. Магистраль или системная шина -- это набор электронных линий, связывающих воедино передачу данных и служебных сигналов в процессор, память и периферийные устройства. Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули, -- шине данных, шине адресов и шине управления . Разрядность шины данных задается разрядностью процессора , т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Данные по шине данных могут передаваться как от процессора к какому-либо устройству, так и в обратную сторону, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для ОЗУ -- код адреса ячейки памяти. Код адреса передается по адресной шине , причем сигналы передаются в одном направлении, от процессора к устройствам, т. е. эта шина является однонаправленной.По шине управления передаются сигналы, определяющие характер обмена информацией, и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.Внешние устройства к шинам подключаются посредством интерфейса . Под интерфейсом понимают совокупность различных характеристик какого-либо переферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором. В случае несовместимости интерфейсов (например, интерфейс системной шины и интерфейс винчестера) используют контроллеры .

Чтобы устройства, входящие в состав компьютера, могли взаимодействовать с центральным процессором, в IBM-совместимых компьютерах предусмотрена система прерываний (Interrupts) . Система прерываний позволяет компьютеру приостановить текущее действие и переключиться на другие в ответ на поступивший запрос, например, на нажатие клавиши на клавиатуре. Ведь с одной стороны, желательно, чтобы компьютер был занят возложенной на него работой, а с другой -- необходима его мгновенная реакция на любой требующий внимания запрос. Прерывания обеспечивают немедленную реакцию системы.

В состав ЭВМ входят следующие компоненты:

    центральный процессор (CPU); оперативная память (memory); устройства хранения информации (storage devices); устройства ввода (input devices); устройства вывода (output devices); устройства связи (communication devices).
Системный блок персонального компьютера содержит корпус и находящиеся в нем источник питания, материнскую (системную, или основную) плату с процессором и оперативной памятью, платы расширения (видеокарту, звуковую карту), различные накопители (жесткий диск, дисководы, приводы CD-ROM), дополнительные устройства. Системный блок обычно имеет несколько параллельных и последовательных портов, которые используются для подключения устройств ввода и вывода, таких как клавиатура, мышь, монитор, принтер.


Главным узлом, определяющим возможности компьютера, является системная, или материнская плата. На ней обычно размещаются: базовый микропроцессор; оперативная память; сверхоперативное ЗУ, называемое также кэш-памятью; ПЗУ с системной BIOS (базовой системой ввода/вывода), набор управляющих микросхем, или чипсетов (chipset), вспомогательных микросхем и контроллеров ввода/вывода; КМОП-память с данными об аппаратных настройках и аккумулятором для ее питания; разъемы расширения, или слоты (slot);


разъемы для подключения интерфейсных кабелей жестких дисков, дисководов, последовательного и параллельного портов, инфракрасного порта, а также универсальной последовательной шины USB; разъемы питания; преобразователь напряжения с 5В на более низкое для питания процессора (например, процессоры i486DX4, Intel Pentium, Intel Pentium Pro потребляют 3,3 В, а современные Intel Pentium III и 4, равно как AMD Athlon и Duron потребляют менее 2В); разъем для подключения клавиатуры и ряд других компонентов. Для подключения индикаторов, кнопок и динамика, расположенных на корпусе системного блока, на материнской плате имеются специальные миниатюрные разъемы-вилки. Подобные же разъемы служат как контакты для перемычек при задании аппаратной конфигурации системы. Если на системной плате сосредоточены все элементы, необходимые для его работы, то она называется All-In-One. У большинства персональных компьютеров системные платы содержат лишь основные функциональные узлы, а остальные элементы расположены на отдельных печатных платах (платах расширения), которые устанавливаются в разъемы расширения. Например, устройство формирования изображения на экране монитора - видеоадаптер пока чаще всего располагается на отдельной плате расширения - видеокарте. Все компоненты материнской платы связаны друг с другом системой проводников (линий), по которым происходит обмен информацией. Эту совокупность линий называют шиной. В отличие от других систем соединения, линии шины делятся на три группы в зависимости от типа передаваемой информации: линии данных, линии адреса и линии управления. Шины в PC различаются и по своему функциональному назначению. Важнейший компонент любого персонального компьютера, его «мозг» - это микропроцессор (CPU, Central Processor Unit - ЦПУ, или центральное процессорное устройство), который управляет работой компьютера и выполняет большую часть обработки информации. Микропроцессор представляет собой сверхбольшую интегральную схему, степень интеграции которой определяется размером кристалла и количеством реализованных в нем транзисторов. Иногда интегральные микросхемы называют чипами (англ. chip). Базовыми элементами микропроцессора являются транзисторные переключатели, на основе которых строятся, например, регистры, представляющие собой совокупность устройств, имеющих два устойчивых состояния и предназначенных для хранения информации и быстрого доступа к ней. Количество и разрядность регистров во многом определяют архитектуру микропроцессора.Выполняемые микропроцессором команды предусматривают, как правило, арифметические действия, логические операции, передачу управления (условную и безусловную) и перемещение данных (между регистрами, оперативной памятью и портами ввода/вывода). С внешними устройствами микропроцессор может общаться благодаря своим шинам адреса, данных и управления, выведенным на специальные контакты корпуса микросхемы. Процесс общения процессора с внешним миром через устройства ввода-вывода по сравнению с информационными процессами внутри него протекает в сотни и тысячи раз медленнее. Это связано с тем, что устройства ввода и вывода информации часто имеют механический принцип действия (принтеры, клавиатура, мышь) и работают медленно. Чтобы освободить процессор от простоя при ожидании окончания работы таких устройств, в компьютер вставляются специализированные микропроцессоры-контроллеры (от англ. controller -- управляющий). Получив от центрального процессора компьютера команду на вывод информации, контроллер самостоятельно управляет работой внешнего устройства. Окончив вывод информации, контроллер сообщает процессору о завершении выполнения команды и готовности к получению следующей.Число таких контроллеров соответствует числу подключенных к процессору устройств ввода и вывода. Так, для управления работой клавиатуры и мыши используется свой отдельный контроллер. Известно, что даже хорошая машинистка не способна набирать на клавиатуре больше 300 знаков в минуту, или 5 знаков в секунду. Чтобы определить, какая из ста клавиш нажата, процессор, не поддержанный контроллером, должен был бы опрашивать клавиши со скоростью 500 раз в секунду. Конечно, по его меркам это не бог весть какая скорость. Но это значит, что часть своего времени процессор будет тратить не на обработку уже имеющейся информации, а на ожидание нажатий клавиш клавиатуры.Таким образом, использование специальных контроллеров для управления устройствами ввода-вывода, усложняя устройство компьютера, одновременно разгружает его центральный процессор от непроизводительных трат времени и повышает общую производительность компьютера. Микропроцессор, как универсальный блок обработки информации был разработан в 1962 году. Американская корпорация Intel в 1971 году начала выпуск микропроцессоров 4004, работавших с четырехразрядными двоичными цифрами. Первенец Intel состоял из 2300 транзисторов. Усовершенствование микропроцессоров шло ускоренными темпами. В 1978 году был создан восьмиразрядный микропроцессор 8080, а в 1981 - шестнадцатиразрядный микропроцессор 8086 и 8088. Именно на его основе был начат выпуск персональных компьютеров. В 1982 году на базе шестнадцатиразрядного микропроцессора 80286 корпорация IBM наладила производство персональных компьютеров IBM PC, клоны которого получили широчайшее распространение по всему миру. В 1985 году был создан 32-разрядный микропроцессор i386, содержавший 275 тысяч транзисторов и обеспечивавший 5 миллионов операций в секунду. В 1989 году появился микропроцессор i486, который содержал 1,2 миллиона транзисторов и обладал быстродействием 20 миллионов операций в секунду. В 1993 году был создан 32-разрядный микропроцессор Pentium, который содержал 3,1 миллиона транзисторов и обладал быстродействием 90 миллионов операций в секунду. Микропроцессоры Pentium III обеспечивают быстродействие 800 миллионов операций в секунду при тактовой частоте 800 МГц. Все эти успехи были достигнуты за счет миниатюризации микросхем. В 1999 году расстояние между транзисторами было уменьшено до 0,18 микрон. Но вскоре разработчики подойдут к рубежу, за которым начинаются фундаментальные физические ограничения. Далее прогнозируется появление молекулярных вычислительных устройств. В них для хранения и преобразования информации предполагают использовать вместо электрических зарядов и импульсов - химические состояния молекул.

Память

Все компьютеры используют три вида памяти: оперативную, постоянную и внешнюю. Оперативная память (ОЗУ - оперативное запоминающее устройство) предназначена для хранения информации, к которой приходится часто обращаться, и обеспечивает режимы ее записи, считывания и хранения. Этот вид памяти называют также памятью с произвольным доступом (Random Access Memory, RAM). По способу хранения информации оперативная память бывает статической и динамической. Постоянная память (ПЗУ - постоянное запоминающее устройство) обычно содержит такую информацию, которая не должна меняться в ходе выполнения микропроцессором различных программ. Постоянная память имеет также название ROM (Read Only Memory), которое указывает на то, что обеспечиваются только режимы считывания и хранения. Постоянная память энергонезависима, т. е. может сохранять информацию и при отключенном питании. Все микросхемы постоянной памяти по способу занесения в них информации делятся на масочные, программируемые изготовителем (ROM), однократно программируемые пользователем (Programmable ROM) и многократно программируемые пользователем (Erasable PROM). Последние, в свою очередь, подразделяются на стираемые электрически и с помощью ультрафиолетового облучения. К элементам EPROM с электрическим стиранием информации относятся, например, микросхемы флэш-памяти (flash). От обычных EPROM они отличаются высокой скоростью доступа и быстрым стиранием записанной информации. Данный тип памяти сегодня широко используется для хранения BIOS и другой постоянной информации. Различные типы оперативной и постоянной памяти можно выстроить в виде определенной иерархии по времени доступа к данным. Оперативная память - совокупность специальных электронных ячеек, каждая из которых может хранить конкретную 8-значную комбинацию из нулей и единиц - 1 байт (8 бит). Каждая такая ячейка имеет адрес (адрес байта) и содержимое (значение байта). Адрес нужен для обращения к содержимому ячейки, для записи и считывания информации. Оперативное запоминающее устройство (ОЗУ) хранит информацию только во время работы компьютера. Емкость оперативной памяти современного компьютера 32-128 Мбайт. При выполнении микропроцессором вычислительных операций должен быть в любой момент обеспечен доступ к любой ячейке оперативной памяти. Поэтому ее называют памятью с произвольной выборкой - RAM (Random Access Memory). Оперативная память выполнена обычно на микросхемах динамического типа с произвольной выборкой (Dynamic Random Access Memory, DRAM). Каждый бит такой памяти представляется в виде наличия (или отсутствия) заряда на конденсаторе, образованном в структуре полупроводникового кристалла.

Статическая память

Статическая память (SRAM) в современных ПК обычно применяется в качестве кэш-памяти второго уровня для кэширования основного объема ОЗУ. Статическая память выполняется обычно на основе ТТЛ-, КМОП- или БиКМОП-микросхем и по способу доступа к данным может быть как асинхронной, так и синхронной. Асинхронным называется доступ к данным, который можно осуществлять в произвольный момент времени. Асинхронная SRAM применялась на материнских платах для третьего - пятого поколения процессоров. Время доступа к ячейкам такой памяти составляло от 15 нс (33 МГц) до 8 нс (66 МГц). Синхронная память обеспечивает доступ к данным не в произвольные моменты времени, а синхронно с тактовыми импульсами. В промежутках между ними память может готовить для доступа следующую порцию данных.

Динамическая память.

Динамическая память (DRAM) в современных ПК используется обычно в качестве оперативной памяти общего назначения, а также как память для видеоадаптера. Из применяемых в современных и перспективных ПК типов динамической памяти наиболее известны DRAM и FPM DRAM, EDO DRAM и BEDO DRAM, EDRAM и CDRAM, Synchronous DRAM, DDR SDRAM и SLDRAM, видеопамять MDRAM, VRAM, WRAM и SGRAM, RDRAM. В памяти динамического типа биты представляются в виде отсутствия и наличия заряда на конденсаторе в структуре полупроводникового кристалла. Конструктивно она выполняется в виде модуля SIMM (Single in line memory module). Каждый бит информации записывается в отдельной ячейке памяти, состоящей из конденсатора и транзистора. Наличие заряда на конденсаторе соответствует 1 в двоичном коде, отсутствие - 0. Транзистор при переключении дает возможность считывать бит информации или записывать новый бит в пустую ячейку памяти. Поиск ячейки по адресу осуществляется специальными дешифрующими схемами, которые образуют матрицу, то есть пересекают кристалл памяти двумя полосами - по горизонтали и вертикали. Когда центральный процессор сообщает адрес ячейки, горизонтальные дешифраторы указывают нужный столбец, а вертикальные - строку. На пересечении находится искомая ячейка. После нахождения ячейки происходит выборка их нее байта данных. Кэш-память (cache memory) - запоминающее устройство с малым временем доступа (в несколько раз меньшим, чем время доступа к основной оперативной памяти), используемое для временного хранения промежуточных результатов и содержимого часто используемых ячеек. Вообще кэшированием данных называется размещение данных в области памяти с более быстрым доступом. В качестве житейской аналогии можно привести библиотеку студента, у которого нужные каждый день учебники лежат на рабочем столе, изредка читаемые классики стоят на книжной полке, а старые ненужные тетради сложены в ящиках. В случае необходимости время доступа к этим источникам будет разным, однако и вероятность того, что потребуется учебник или старая тетрадь, тоже разная. В

мире компьютерной памяти этот принцип применим потому, что более быстрая память обычно стоит существенно дороже более медленной, однако применение малого объема быстрой (но дорогой) кэш-памяти, в комплексе с большим объемом медленной (но дешевой) памяти позволяет создать приемлемое по цене и скорости решение. Применение кэширования особенно эффективно, когда доступ к данным осуществляется преимущественно в последовательном порядке. Тогда после первого запроса на чтение данных, расположенных в медленной (кэшируемой) памяти можно заранее выполнить чтение следующих блоков данных в кэш-память для того, чтобы при следующем запросе на чтение данных почти мгновенно выдать их из кэш-памяти. Такой прием называется упреждающим чтением. Упреждающее чтение применяется во всех современных жестких дисках, имеющих от 64 до 1024 Кбайт кэш-памяти, выполненной на основе динамической RAM. Считываемые с диска данные с некоторым запасом помещаются в кэш-память диска и определенное время там хранятся. При повторном обращении к тем же данным они считываются уже из кэш-памяти, что происходит в 10-1000 раз быстрее. Кэширование данных применяется также в процессорах. Внутри кристалла процессора находится малый объем (от 1 до 1024 Кбайт) очень быстрой статической памяти, работающей на частоте процессора. Эта память используется для кэширования существенно более медленной оперативной памяти, выполненной на основе динамической RAM. Таким образом, в различных ситуациях одна и та же память может быть как кэшем, так и кэшируемой памятью. Чипсетом ( chipset) материнской платы называют набор микросхем, управляющий процессором, оперативной памятью и ПЗУ, кэш-памятью, системными шинами и интерфейсами передачи данных, а также рядом периферийных устройств. Чипсеты конструктивно привязаны к типу используемого процессора, причем за время жизненного цикла процессора успевает смениться несколько поколений чипсетов для него, причем первые чипсеты позволяют использовать преимущества нового процессора лишь отчасти, а последние позволяют выжать из процессора максимальную производительность и использовать широкий спектр процессоров. BIOS (Basic Input Output System - базовая система ввода-вывода) - часть программного обеспечения микрокомпьютеров, поддерживающая управление адаптерами внешних устройств, тестирование и начальную загрузку компьютера. BIOS можно рассматривать и как составную часть аппаратных средств, и как один из программных модулей операционной системы. BIOS встроена в ПК и содержит программы управления клавиатурой, видеокартой, дисками, портами и другими устройствами до загрузки какой-либо операционной системы.
BIOS также содержит программу тестирования при включении питания компьютера (POST, Power On Self Test) и программу начального загрузчика. Большинство современных видеоадаптеров, а также многие SCSI-контроллеры имеют собственную BIOS, которая обычно дополняет системную. В общем BIOS можно рассматривать как связующее звено между конкретными особенностями реализации аппаратуры в ПК и стандартными требованиями операционной системы. Система BIOS в современных компьютерах реализована в виде микросхемы ПЗУ (ROM), установленной на системной плате компьютера. Для хранения ROM BIOS в материнских платах для пятого и более поздних поколений процессоров применяются электрически перепрограммируемые запоминающие устройства (EEPROM или Flash EEPROM), в более старых платах или в видеокартах - устройства с ультрафиолетовым стиранием (EPROM). Такие элементы BIOS называют Flash-BIOS. Теперь пользователь может оперативно обновлять BIOS, загружая новейшую версию из Интернета или с дискеты. Многие современные материнские платы комплектуются двумя микросхемами BIOS, что позволяет хранить в них различные настройки и повышает надежность системы. Под не совсем точным термином CMOS RAM (Complementary Metal-Oxide Semiconductor, CMOS или КМОП) понимается энергонезависимая память, в которой хранится информация о текущей дате, показаниях часов, конфигурации компьютера (количестве оперативной памяти, типах накопителей). Неточность термина в том, что КМОП - это не название устройства, а всего лишь технология изготовления микросхемы (это напоминает распространенную ошибку:... радиостанция FM-диапазона...», в то время, как FM - это способ модуляции сигнала, никак не связанный с диапазоном). Поэтому в документации часто употребляются также термины EEPROM или non-volatile RAM. В системе BIOS имеется программа Setup, которая может изменять содержимое CMOS-памяти, то есть задавать параметры конфигурации системы. Вызывается эта программа определенной комбинацией клавиш: Del - для AWARD BIOS и Ins или F2 - для некоторых версий AMI BIOS. Вообще, при начальной загрузке на экране, как правило, пишется название клавиши, которую следует нажать для запуска программы Setup. При загрузке и выполнении контроля оборудования BIOS подает на динамик компьютера звуки, по которым можно диагностировать проблему. Если все в порядке, то подается длинный гудок; если неисправна видеокарта - то 1 длинный и 2 коротких гудка; если неисправна память - то повторяющиеся короткие гудки. Более подробно эти коды расписаны в руководстве к материнской плате. Если неисправен процессор, то никаких гудков не будет, поскольку программа POSTYLE="выполняется именно процессором. Системную шину можно упрощенно представить как совокупность сигнальных линий, объединенных по их назначению (данные, адреса, управление), которые также имеют вполне определенные электрические характеристики и протоколы передачи информации. Основной обязанностью системной шины является передача информации между процессором (или процессорами) и остальными электронными компонентами компьютера. По этой шине осуществляется не только передача информации, но и адресация устройств, а также происходит обмен специальными служебными сигналами. Используемые в настоящее время шины отличаются по разрядности, способу передачи сигнала (последовательные или параллельные), пропускной способности, количеству и типу поддерживаемых устройств, а также протоколу работы. Как правило, шины ПК можно представить в виде некой иерархической структуры - шинной архитектуры. Особенностью современных ПК является наличие шины ISA, унаследованной от самых первых моделей IBM PC. Кроме нее, в ПК применяются шины EISA, MCA, VLB, PCI, PCMCIA (CardBus) и AGP. Шины могут быть синхронными (осуществляющими передачу данных только по тактовым импульсам) и асинхронными (осуществляющими передачу данных в произвольные моменты времени), а также использовать различные схемы арбитража (то есть способа совместного использования шины несколькими устройствами). Е

сли обмен информацией ведется между периферийным устройством и контроллером, то соединяющая их линия передачи данных называется интерфейсом передачи данных, или просто интерфейсом. Среди применяемых в современных и перспективных ПК интерфейсов можно отметить EIDE, SCSI, SSA и Fibre Channel, USB, FireWire (IEEE 1394) и DeviceBay. Среди интерфейсов передачи данных особняком стоят порты ввода/вывода, использующиеся для подключения низкоскоростных периферийных устройств: последовательный порт (COM), параллельный порт (LPT), игровой порт/MIDI порт и инфракрасный порт (IrDA).

Параллельный порт (LPT) в IBM PC-совместимом компьютере чаще всего используется для подключения принтера, поэтому его называют также портом принтера. Персональный компьютер работает максимум с тремя параллельными портами, которые имеют логические имена LPT1, LPT2 и LPT3. Подсоединение кабеля к адаптеру параллельного интерфейса производится через 25-контактный разъем типа DB-Shell (DB-25), а со стороны принтера используется специальный 36-контактный разъем типа Centronics. Поскольку частота передаваемых сигналов может достигать десятков кГц, длина таких кабелей обычно не превышает трех метров. Известно несколько модификаций параллельных скоростных интерфейсов, например EPP (Enhanced Parallel Port) и ECP (Extended Capabilities Port). Эти интерфейсы обеспечивают скорость до 2-5 Мбайт/с и поддерживают двустороннюю передачу данных. В настоящее время обе модификации объединены в одном стандарте IEEE 1284. Последовательный интерфейс используется для большинства периферийных устройств, таких как плоттер, удаленный принтер, мышь, внешний модем. До настоящего времени для последовательной связи IBM PC-совместимых компьютеров используются адаптеры с интерфейсом RS-232С (новое название EIA-232D). В современном IBM PC-совместимом компьютере может использоваться до четырех последовательных портов, имеющих логические имена соответственно COM1, COM2, COM3 и COM4. Основой последовательного адаптера является микросхема UART (Universal Asynchronous Receiver/Transmitter) - универсальный асинхронный приемопередатчик. Обычно используется микросхема UART 16550A. Она имеет 16-символьный буфер на прием и на передачу и, кроме того, может использовать несколько каналов прямого доступа в память DMA. При передаче микросхема UART преобразует параллельный код в последовательный и передает его побитно в линию, обрамляя исходную последовательность битами старта, останова и контроля. При приеме данных UART преобразует последовательный код в параллельный (разумеется, опуская служебные символы). Непременным условием правильной передачи (приема) является одинаковая скорость работы приемного и передающего UART, что обеспечивается стабильной частотой кварцевого резонатора. Основным преимуществом последовательной передачи является возможность пересылки данных на большие расстояния, как правило, не менее 30 метров. В IBM PC-совместимых персональных компьютерах из 25 сигналов, предусмотренных стандартом RS-232, используются в соответствии с EIA только 9; таким образом, в данном интерфейсе применяются как 25-, так и 9-контактные разъемы типа DB-Shell. В спецификации PC99 (см. Настольный ПК) подчеркивается, что единственным устройством, использующим последовательный и параллельный порты, в новых ПК может быть только принтер. Остальные устройства должны использовать шины FireWire или USB. Универсальная последовательная шина USB (Universal Serial Bus) по спецификации РС97 является обязательным элементом современного ПК. Она должна постепенно заменить все ранее существовавшие интерфейсы для подключения перефирийных устройств (параллельный и последовательный п

орты, разъемы PS/2 для мыши и клавиатуры, интерфейс SCSI). Стандарт USB был разработан в 1995 году консорциусом компаний Compaq, DEC, IBM, Microsoft, NEC, Northern Telecom, и летом 1996 года на рынке появились первые компьютеры с портами USB. Шина USB представляет собой последовательный интерфейс передачи данных для средне- и низкоскоростных периферийных устройств (для устройств, требующих более высокой скорости обмена предлагается шина FireWire). Шина USB рассчитана на подключение до 127 устройств, при этом поддерживается их автоопределение Plug-n-play, а также так называемое «горячее» подключение, то есть подключение к работающему компьютеру без его перезагрузки. Скорость передачи данных по USB составляет 12 Мбит/с (т. е. не более 1,5 Мбайт/с), причем для медленных устройств выделен подканал на 1,5 Мбит/с. В качестве кабеля используется витая пара. Длина сегмента USB может достигать 5 метров. Устройства USB бывают двух видов: концентратор (hub) для подключения других устройств и обычное устройство. Концентраторы могут быть отдельными устройствами или (что встречается чаще) частью других устройств с автономным питанием, например, мониторов. С интерфейсом USB выпускаются модемы, клавиатуры, мыши, CD-ROM, джойстики, ленточные и дисковые накопители, сканеры и принтеры, цифровые камеры, мониторы (не для передачи сигнала, а для управления настройками монитора) и другие устройства. В компьютере Apple iMac, например, шина USB служит единственным интерфейсом для подключения медленных периферийных устройств. Поддержка USB на уровне материнских плат реализована во всех современных ПК на базе пятого и шестого поколения процессоров x86, однако поддержка со стороны BIOS и операционной системы в полном объеме реализована только в Windows 98 и Windows NT 5.0. В октябре 1999 года был согласован предварительный вариант стандарта USB 2.0, предусматривающий скорость обмена данных 360-480 Мбит/с. Для связи портативных компьютеров с настольными, а также для подключения к ним лазерных принтеров используется беспроводный интерфейс, работающий в инфракрасном диапазоне. Принцип работы инфракрасного порта довольно прост: светодиод (LED), работающий в инфракрасном диапазоне, излучает последовательность импульсов, которую принимает соответствующий фотодиод и затем преобразует обратно в электрические сигналы. Подобная связь имеет ряд преимуществ: низкую цену, невысокое энергопотребление и отсутствие вредных высокочастотных излучений. Интерфейс SCSI был разработан в конце 1970-х годов организацией Shugart Associates. Первоначально известный под названием SASI (Shugart Associates System Interface), он после стандартизации в 1986 году уже под именем SCSI (читается «скази») стал одним из промышленных стандартов для подключения периферийных устройств - винчестеров, стримеров, сменных жестких и магнитооптических дисков, сканеров, CD-ROM и CD-R, DVD-ROM и т. п. Интерфейс SCSI является параллельным. К шине одновременно может быть подключено до восьми устройств, включая основной контроллер SCSI (или хост-адаптер). Контроллер SCSI является по сути самостоятельным процессором и имеет свою собственную BIOS (которая иногда может размещаться в BIOS материнской платы). Он выполняет все операции по обслуживанию и управлению шиной SCSI, освобождая от этого центральный процессор. Физически интерфейс SCSI представляет собой плоский кабель с 25- или 50-контактными разъемами для подключения периферийных устройств. Шина SCSI содержит восемь линий данных, сопровождаемых линией контроля четности, и девять управляющих линий. Стандарт SCSI определяет два способа передачи сигналов - однополярный, или асимметричный (Single ended) и дифференциальный (Differential). В первом случае имеется один провод с нулевым потенциалом («земля»), относительно которого передаются сигналы по линиям данных с уровнями сигналов, соответствующим ТТЛ-логике. При дифференциальной передаче сигнала для каждой линии данных выделено два провода, и сигнал на этой линии получается вычитанием потенциалов на их выходах. При этом достигается гораздо лучшая помехозащищенность, что позволяет увеличить длину кабеля. Для интерфейса SCSI необходимо наличие терминаторов - согласующих сопротивлений, которые поглощают сигналы на концах кабеля и препятствуют образованию эха. Для интерфейса SCSI вообще характерна высокая чувствительность к качеству изготовления кабелей и к их длине, которая может быть различной в зависимости от версии интерфейса. Программное обеспечение для интерфейса SCSI не оперирует физическими характеристиками накопителя (то есть числом цилиндров, головок и т. д.), а имеет дело только с логическими блоками данных, поэтому в одной SCSI-цепочке с легкостью уживаются, например, сканер, жесткий диск и накопитель CD-R. Опрос устройств производится контроллером SCSI сразу после включения питания. При этом для устройств SCSI реализовано автоконфигурирование устройств (Plug-n-play) по протоколу SCAM (SCSI Configured AutoMagically), в котором значения SCSI ID выделяются автоматически. Для стандартизированного управления SCSI-устройствами наиболее широко применяется программный интерфейс ASPI (Advanced SCSI Programming Interface). Существует более десятка различных версий интерфейса SCSI. Наиболее существенные из них - SCSI-1, Fast SCSI, Fast Wide SCSI, Ultra SCSI, Ultra 2 SCSI. Спецификация шины PCI (Revision 1.0) была представлена компанией Intel в июне 1992 года как процессорно-независимая шина. Учитывая опыт эксплуатации шины VL-bus (см. Шина VESA), разработчики PCI отказались от использования шины процессора и ввели еще одну «мезанинную» (mezzanine) шину. Благодаря этому шина может работать параллельно с шиной процессора (например, процессор работает оперативной памятью, а в это время по шине PCI идет обмен данными с видеоадаптером или жестким диском). Важным фактором, способствовавшим широкому распространению PCI, стало то, что компания Intel объявила стандарт шины PCI открытым и передала его некоммерческой организации PCI SIG (PCI Special Interest Group), которая начала вести все работы по его поддержке и дальнейшему развитию.

Шина PCI является синхронной 32- или 64-разрядной шиной, работающей на частоте 33 или 66 МГц. В современных ПК пока используется 32-разрядная 33 МГц шина PCI, хотя есть и исключения: наборы микросхем для ПК Micron Samurai и Intel 450NX AGPSet поддерживают 64-разрядную шину, в рабочих станциях Digital и Sun также используется 64-разрядная шина PCI. Для уменьшения числа контактов в PCI применено мультиплексирование (передача адреса и данных по одним и тем же линиям в разные моменты времени). PCI позволяет использовать платы с напряжением питания 5 и 3,3 В. Шина поддерживает несколько арбитров шины (multiply bus master). При передаче данных поддерживается кэширование и блочная передача. Шина PCI поддерживает автоматическое определение и конфигурирование плат расширения (Plug-n-play). Спецификация PCI позволяет создавать на одной плате многофункциональные устройства с числом функций до восьми (например, модем, звук, сетевой интерфейс и т. п.). Шина PCI в настольном конструктиве имеет 4 124/188-контактных разъема (32/64-разрядная версия) или 8 разъемов в конструктиве CompactPCI, применяемом в промышленных и военных компьютерах. Если необходимо большее количество разъемов, то применяются микросхемы моста PCI-PCI (при этом пропускная способность шины уменьшается). Максимально возможная скорость передачи данных по шине PCI составляет от 132 Мбайт/с для 32-бит/33 МГц до 528 Мбайт/с для 64-бит/66 МГц реализаций шины. Видеоадаптер (синоним - видеокарта) предназначен для хранения видеоинформации и ее отображения на экране монитора. Он непосредственно управляет монитором, а также процессом вывода информации на экран с помощью изменения сигналов строчной и кадровой развертки ЭЛТ монитора, яркости элементов изображения и параметров смешения цветов. Основными узлами современного видеоадаптера являются собственно видеоконтроллер, видео BIOS, видеопамять, специальный цифроаналоговый преобразователь RAMDAC (Random Access Memory Digital to Analog Converter), кварцевый генератор (один или несколько) и микросхемы интерфейса с системной шиной (ISA, VLB, PCI, AGP или другой). Важным элементом видеоподсистемы является собственная память. Для этой цели используется память видеоадаптера, которая часто также называется видеопамятью, или фрейм-буфером, или же часть оперативной памяти ПК (в архитектуре с разделяемой памятью UMA). Все современные видеоподсистемы могут работать в одном из двух основных видеорежимов: текстовом или графическом. В текстовом режиме экран монитора разбивается на отдельные символьные позиции, в каждой из которых одновременно может выводиться только один символ. Для преобразования кодов символов, хранимых в видеопамяти адаптера, в точечные изображения на экране служит так называемый знакогенератор, который обычно представляет собой ПЗУ, где хранятся изображения символов, «разложенные» по строкам. При получении кода символа знакогенератор формирует на своем выходе соответствующий двоичный код, который затем преобразуется в видеосигнал. Текстовый режим в современных операционных системах используется только на этапе начальной загрузки.


В графическом режиме для каждой точки изображения, называемой пикселом, отводится от одного (монохромный режим) до 32-бит (цветной). Графический режим часто называют режимом с адресацией всех точек (All Points Addresable), поскольку только в этом случае имеется доступ к каждой точке изображения. Максимальное разрешение и количество воспроизводимых цветов конкретной видеоподсистемы в первую очередь зависят от общего объема видеопамяти и количества бит, приходящихся на один элемент изображения. Существует несколько стандартов видеокарт. За время существования IBM PC-совместимых персональных компьютеров сменилось несколько поколений видеоадаптеров и связанных с ними стандартов представления изображения. Основным параметром в этих стандартах является разрешение (количество символов, или пикселов по горизонтали и вертикали), количество одновременно отображаемых на экране цветов и частота кадровой развертки (которая представляет собой частоту перерисовки изображения на экране монитора, выполняемую устройством развертки).

Накопители.

Для хранения программ и данных в персональных компьютерах используют различного рода накопители, общая емкость которых, как правило, в сотни раз превосходит емкость оперативной памяти. По отношению к компьютеру накопители могут быть внешними и встраиваемыми (внутренними). Внешние накопители имеют собственный корпус и источник питания, что экономит пространство внутри корпуса компьютера и уменьшает нагрузку на его блок питания. Встраиваемые накопители крепятся в специальных монтажных отсеках (drive bays), что позволяет создавать компактные системы, которые совмещают в системном блоке все необходимые устройства. Сам накопитель можно рассматривать как совокупность носителя и соответствующего привода. Различают накопители со сменными и несменными носителями.Ниже перечислены наиболее распространенные устройства хранения информации.Винчестеры (hard discs) Жесткие диски -- наиболее быстрые из внешних устройств хранения информации. Кроме того, информация, хранящаяся на винчестере, может быть считана с него в произвольном порядке (диск -- устройство с произвольным доступом).Емкость диска современного персонального компьютера составляет десятки гигабайт. В одной ЭВМ может быть установлено несколько винчестеров.Оптические диски (cdroms) Лазерные диски, как их еще называют, имеют емкость до 750 мегабайт и обеспечивают только считывание записанной на них однажды информации в режиме произвольного доступа. Скорость считывания информации определяется устройством, в которое вставляется компакт-диск (cdrom drive).Магнито-оптические диски В отличие от оптических дисков магнито-оптические диски позволяют не только читать, но и записывать информацию.Флоппи диски (floppy discs) В основе этих устройств хранения лежит гибкий магнитный диск, помещенный в твердую оболочку. Для того чтобы прочитать информацию, хранящуюся на дискете, ее необходимо вставить в дисковод (floppy disc drive) компьютера. Емкость современных дискет всего 1.44 мегабайта. По способу доступа дискета подобна винчестеру.Zip and Jaz Iomega discs Это относительно новые носители информации, которые призваны заменить гибкие магнитные диски. Их можно рассматривать, как быстрые и большие по емкости (100 мегабайт -- Zip, 1 гигабайт -- Jaz) дискеты.Магнитные ленты (magnetic tapes) Современные магнитные ленты, хранящие большие объемы информации (до нескольких гигабайт), внешне напоминают обычные магнитофонные кассеты и характеризуются строго последовательным доступом к содержащейся на них информации

Жесткий диск.

Жесткий диск (винчестер), устройство для постоянного хранения информации, используемой при работе с компьютером. Свое название «жесткий» получил в отличие от носителей информации на гибких магнитных лентах и дисках. Принципы современной технологии изготовления жесткого диска были разработаны в 1973 американской фирмой Ай-Би-Эм (IBM). Новое устройство, которое могло хранить до 16 килобайт информации, имело 30 цилиндров (дорожек) для записи, каждый из которых был разбит на 30 секторов. Поэтому оно получило название 30/30. Известные винтовки винчестер имеют калибр 30/30, поэтому жесткие диски тоже стали называться «винчестерами». Кроме того, разрабатывался жесткий диск в американском городе Винчестере. Как правило, жесткий диск несъемный, но существуют модели съемных (removable) винчестеров. Жесткий диск смонтирован на оси-шпинделе, который приводится в движение специальным двигателем. Он содержит от одного до десяти дисков (platters). Скорость вращения двигателя для обычных моделей может составлять 3600, 4500, 5400, 7200, 10000, 12000 об/мин. Сами диски представляют собой обработанные с высокой точностью керамические или алюминиевые пластины с магнитным покрытием - тонким слоем окиси железа (в более ранних моделях) или окиси хрома (в более поздних моделях). Каждый диск (platter) разбит на последовательно расположенные дорожки-секторы, соответствующие зонам остаточной намагниченности, созданной головками. Объем памяти сектора равен 512 байтам.

Головки считывания-записи вместе с их несущей конструкцией и дисками первоначально были заключены в герметически закрытый корпус, называемый модулем данных. При установке этого модуля на дисковод он автоматически соединялся с системой, подающей очищенный воздух. В современных винчестерах пакет дисков уже постоянно крепится на дисководе, система не герметична, а принудительная вентиляция отсутствует. Толщина воздушной подушки, создаваемой аэродинамикой вращающегося диска и формой головки, гораздо тоньше человеческого волоса. Важнейшей частью винчестера являются головки чтения и записи (read-write head). Как правило, они находятся на специальном позиционере (head actuator). Для перемещения позиционера используются преимущественно линейные двигатели (типа voice coil - «звуковая катушка»). В винчестерах применяется несколько типов головок: монолитные, композитные, тонкопленочные, магниторезистивные (MR, Magneto-Resistive), а также головки с сильным магниторезистивным эффектом (GMR, Giant Magneto-Resistive). Магниторезистивная головка, разработанная IBM в начале 1990-х годов, представляет собой комбинацию из двух головок: тонкопленочной для записи и магниторезистивной для чтения. Подобные головки позволяют почти в полтора раза увеличить плотность записи. Еще больше позволяют повысить плотность записи GMR-головки. Головки не касаются поверхностей дисков, а перемещаются над ними на расстоянии долей микрона. Внутри любого винчестера обязательно находится электронная плата, которая расшифровывает команды контроллера жесткого диска, стабилизирует скорость вращения двигателя, генерирует сигналы для головок записи и усиливает их от головок чтения. Под пакетом дисков со шпинделем размещается двигатель. В более ранних моделях винчестеров для привода позиционеров применялся шаговый двигатель, поэтому расстояние между дорожками определялось величиной его шага. В современных моделях используется линейный двигатель, который не имеет дискретности, характерной для шагового двигателя. Поэтому наведение магнитных головок на дорожку производится точнее, что обеспечивает большую плотность записи на дисках. В ходе выполнения процедуры так называемого низкоуровневого форматирования (low-level formatting) на жесткий диск записывается информация, которая определяет разметку винчестера на цилиндры и секторы. Структура формата включает в себя различную служебную информацию: байты синхронизации, идентификационные заголовки, байты контроля четности. В современных винчестерах такая информация записывается однократно при изготовлении винчестера. Повреждение этой информации при самостоятельном низкоуровневом форматировании чревато полной неработоспособностью диска и необходимостью восстановления этой информации в заводских условиях. Емкость винчестера измеряется в мегабайтах. К концу 1990-х годов средняя емкость жестких дисков для настольных систем достигла 15 гигабайт, а в серверах и рабочих станциях с интерфейсом SCSI применяются винчестеры емкостью свыше 50 гигабайт. В большинстве современных персональных компьютеров применяются жесткие диски емкостью от 10 до 100 гигабайт. Фирма IBM освоила выпуск самого маленького в мире жесткого диска, предназначенного для ручных компьютеров и цифровых фотоаппаратов. Его диаметр 25 мм, а объем памяти 340 Мбайт.

Гибкий диск.

В приводе флоппи-диска (гибкого диска, или просто дискеты) имеются два двигателя: один обеспечивает стабильную скорость вращения вставленной в накопитель дискеты, а второй перемещает головки записи-чтения. Скорость вращения первого двигателя зависит от типа дискеты и составляет от 300 до 360 об/мин. Двигатель для перемещения головок в этих приводах всегда шаговый. С его помощью головки перемещаются по радиусу от края диска к его центру дискретными интервалами. В отличие от привода винчестера головки в данном устройстве не «парят» над поверхностью флоппи-диска, а касаются ее. Работой всех узлов привода управляет соответствующий контроллер.

С
тандартным интерфейсом для всех приводов в IBM-совместимых компьютерах является SA-400 (Shugart Associates), контроллер которого соединен с накопителями посредством 34-контактного кабеля. На приводе дисков с форм-фактором 5,25 дюйма используется «ножевой» (печатный) разъем, а на приводе дисков 3,5 дюйма - обычный штырьковый разъем-вилка. Для подключения разных типов дисководов предназначены обычно комбинированные кабели с четырьмя разъемами, включенными попарно. На обычном интерфейсном кабеле для крайнего разъема проводники на контактах с 10-го по 16-й перекручены. При использовании «прямого» кабеля надо обязательно изменить установку перемычек на приводе, определяющих его номер (DS1-DS4). Некоторые BIOS компьютеров позволяют программно изменять назначение физического адреса: «первый» (A:) и «второй» (B:) привод. В отличие от винчестеров, для флоппи-дисководов порядок накопителя (A: или B:) определяется именно положением устройства на кабеле. Для каждого из типоразмеров дискет (5,25 или 3,5 дюйма) существуют свои специальные приводы соответствующего форм-фактора. Первый образец дискеты был создан IBM в 1967 году. Она была диаметром 8 дюймов, имела емкость 100 Кбайт и получила название Flexible disk, то есть гибкий диск. Название флоппи-диск она получила позднее от английского слова flop, что означает «хлопать крыльями». Первый образец дискеты представлял собой круглую пластину с центральным, усиленным по краям отверстием. Конверт дискеты имел отверстия для шпинделя, который вращал носитель, прорезь для головок и оптопары для считывания индекса. В 1976 году размер гибкого диска уменьшили до 5,25 дюйма и тогда появилось название уменьшительное название diskette - дискета. Сначала ее объем составлял 180 Кбайт, затем он вырос до 360 Кбайт и 1,2 Мбайт. Недостатком гибкого диска была слабая защита от механических повреждений. В 1980 году Sony разработала дискету и дисковод на 3,5 дюйма. Носитель в ней был помещен в сплошной корпус из твердого пластика. Единственное отверстие для доступа головок к носителю было прикрыто металлической шторкой с возвратной пружиной. С этого времени дискета перестала быть гибкой. В настоящее время дискеты используются как самое дешевое средство резервного копирования (объемом информации не более 10 Мбайт), а также для переноса данных с одного ПК на другие, в том числе с портативных на стационарные ПК. Дискеты каждого типоразмера (5,25 и 3,5 дюйма) бывают обычно двусторонними (Double Sided, DS), односторонние давно стали анахронизмом. Плотность записи может быть различной: одинарной (Single Density, SD), двойной (Double Density, DD) и высокой (High Density, HD). Поскольку об одинарной плотности уже мало кто вспоминает, такую классификацию обычно упрощают, говоря только о двусторонних дискетах двойной плотности (DS/DD, емкость 360 или 720 Кбайт) и двусторонних дискетах высокой плотности (DS/HD, емкость 1,2, 1,44 или 2,88 Мбайта). Дискеты бывают форматированные и неформатированные. Хотя форматированные в заводских условиях дискеты немного дороже неформатированных, пользователю не придется тратить время на их форматирование, а кроме того, они прошли дополнительное тестирование. Наиболее распространены 3,5-дюймовые дискеты. Их магнитный диск помещен в прочный пластмассовый корпус. Зона контакта магнитных головок с поверхностью диска закрыта специальной шторкой (задвижкой), отодвигаемой только внутри накопителя. Скорость чтения/записи для 3,5-дюймового дисковода составляет около 63 Кбайт/с, среднее время поиска - порядка 80 мс. На диске располагается 80 дорожек (хотя некоторые программы форматирования позволяют использовать технологические дорожки 80, 81 и 82 для повышения емкости диска). В конце 1980-х годов фирма Toshiba за счет улучшения технологии производства и способов записи сумела повысить емкость дискеты до 2,88 Мбайт. Однако этот формат не прижился, и вплоть до конца 20 века, подавляющее большинство дискет имели емкомсть 1,44 Мбайт. Как и любой другой магнитный дисковый носитель, гибкий диск дискеты разбит на концетрически расположенные дорожки, которые, в свою очередь, разьиты на секторы. Перемещение головки для доступа к различным дорожкам осуществляется при помощи специального привода позиционирования головки, который перемещает в радиальном направлении блок магнитных головок от одной дорожки к другой. Нумерация дорожек начинается с 0, а секторов с 1. Эта система впоследствии перешла на жесткие диски. Принцип записи информации на дискету - такой же, как и в магнитофоне, при непосредственном механическом контакте головки с магнитным слоем, нанесенным на искусственную пленку. Однако в отличие от магнитофона запись здесь осуществляется без высокочастотного подмагничивания, а путем перемагничивания материала носителя до насыщения. Общие принципы принципы конструкции блока головок для считывания и записи информации с течением времени почти не изменились. Их особенность заключается в наличии двух головок стирания, расположенных по бокам сзади от головки записи/воспроизведения (так называемое туннельное стирание).

Компакт диск.

Компакт-диск - носитель информации в числовом виде, записанной на оптический (лазерный) диск. Наибольшее распространение получили компакт-диски для записи звука (аудиодиски) и компьютерные компакт-диски (CD-ROM, Compact Disk Read Only Memory - память на компакт-диске только для чтения). Технология оптического диска была разработана и продемонстрирована фирмой Philips в 1979 году. Оптический компакт-диск состоит из прочной, прозрачной основы (поликарбонатной или полихлорвиниловой), отражающего и защитных слоев. В качестве отражающей поверхности обычно используется слой напыленного алюминия. Цифровая информация представляется на отражающей поверхности чередованием впадин (неотражающих пятен) и отражающих свет участков. Компакт-диск имеет всего одну физическую дорожку в форме непрерывной спирали, идущей от наружного диаметра диска к внутреннему. Считывание информации с компакт-диска происходит при помощи лазерного луча, который, попадая на отражающий свет участок, отклоняется на фотодетектор, интерпретирующий сигнал как двоичную единицу. Луч лазера, попадающий во впадину, не отражается и фотодетектор фиксирует двоичный ноль. Компьтерные компакт-диски содержат до 640 мегабайт информации, что достаточно для записи больших программных комплексов, игр, мультимедиа-программ. Большинство компьютерных компакт-дисков, как и все аудио-диски предназначены только для чтения информации. Запись данных на компакт-диски осуществляется при их изготовлении в заводских условиях. Но существуют специальные компакт-диски на которых можно записать (CD-R) и перезаписать информацию (CD-RW). Информацию с компьютерных компакт-дисков считывает дисковод компакт-дисков. Современные персональные компьютеры непременно имеют привод компакт-дисков и при наличии звуковой карты могут проигрывать аудиодиски. Материнские платы нового поколения поддерживают загрузку компьютера с CD-ROM, что бывает удобно при установке новой операционной системы или при проверке компьютера на наличие вирусов. В конце 1990-х годов появились компакт-диски нового поколения - DVD (Digital Versatile Disc - цифровой многоцелевой диск) с большой емкостью, которые применяются для записи полнометражных фильмов, звука сверхвысокого качества и мультимедийных компьютерных программ. Существуют несколько вариантов DVD, отличающихся по емкости: односторонние, двусторонние, однослойные и двухслойные. Односторонние однослойные DVD-диски имеют емкость 4,7 Гбайт информации, двухслойные - 8,5 Гбайт, двухсторонние однослойные вмещают 9,4 Гбайт, двухсторонние двухслойные - 17 Гбайт. Луч лазера в обычном приводе CD-ROM имеет длину волны 780 нм, а в устройствах DVD - от 635-до 650 нм, благодаря чему плотность записи существенно возросла.

CD-RW

В настоящее время массовому пользователю стали доступны приводы CD-ROM с возможностью записи (CD-R) и перезаписи (CD-RW) информации. Благодаря невысокой цене привода и чистых носителей для однократной записи, эти устройства стали широко применяться для архивирования данных, резервного копирования, хранения больших объемов информации и т. п. Привод CD-R (раньше применялось название WORM, Write Once - Read Many) позволяет также создать (или скопировать) аудиодиск, который можно будет воспроизводить на любой бытовой аудиоаппаратуре. Это позволяет, например, самостоятельно создавать диски со сборниками композиций любимых исполнителей без потери качества при переписи, поскольку запись осуществляется в цифровом виде. Носители на CD с однократной записью обладают очень высокой надежностью. Срок хранения чистого диска до записи составляет от 5 до 10 лет, а записанный диск может храниться по разным оценкам от 70 до 200 лет. Стандартный объем диска составляет 74 минуты (при записи аудиоданных), или 650 Мбайт. Существуют диски диаметром 120 мм и емкостью 63 и 74 минуты, и с диаметром 80 мм и емкостью 18 и 21 минута. Важным достоинством CD-R дисков является возможность их чтения на любом приводе CD-ROM.
  • Лекция 1 История развития вычислительной техники. Цель

    Лекция

    Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные

  • Лекции по информатике Лекция Введение в информатику Термин "информатика" (франц informatique)

    Лекции

    Термин "информатика" (франц. informatique) происходит от французских слов information (информация) и automatique (автоматика) и дословно означает "информационная автоматика".