Как снизить шум вентилятора и выяснить причины неполадки. Уменьшаем шум от компьютера с помощью программы для управления кулерами Как при высокой производительности уменьшить шум кулера

Части. Это может быть активная система охлаждения с вентиляторами, винчестер – жесткий диск-накопитель. Обычно он работает очень тихо, но если его звук вас раздражает, то можно поменять его на твердотельные SSD-накопители. Это значительно увеличит скорость работы поддисковой системы.


Если с вашим винчестером все в порядке, это значит, что источником шума являются вентиляторы системы охлаждения.

Способы снижения шума от кулеров ПК

Шум можно устранить большим количеством способов:


Уменьшить нагрузку на процессор;


Заменить систему охлаждения;


Принудительно снизить частоту вращения;


Заменить маленькие кулеры большими;


Смазать вентиляторы;


Проверить настройку вентиляторов;


Очистить радиатор от пыли и загрязнений.

Как убрать шум

Чем сильнее загружен центральный процессор, тем больше тепла он выделяет и сильнее работают его вентиляторы. А если еще и программа на компьютере зависла, то нагрузка дополнительно увеличивается. Чтобы устранить проблему, достаточно закрыть зависшую программу.


Если заменить систему охлаждения на жидкостную, то можно улучшить теплоотвод. При этом во время их работы вы будете слышать только звук работающей помпы и перетекающей воды.


Существуют специальные программы для уменьшения частоты вращения кулеров. Одна из самых популярных – SpeedFan. Она хороша тем, что может управлять скоростью вентиляторов в автоматическом режиме.


Чем больше крыльчатка вентилятора, тем лучше эффект охлаждения, которое он обеспечивает. При этом количество его вращений меньше, и, соответственно, шум компьютера снижается. Подшипники в вентиляторах тоже бывают разными. Среди двух видов – качения и скольжения, лучше выбрать первый вариант, поскольку он более стабилен по издающим звуковым эффектам.


Иногда достаточно просто смазать вентилятор, чтобы он начал работать тише. Для этих целей подойдет масло для швейной машинки. Если вы хотите смазать кулер процессора, подденьте наклейку, которая наклеена на подшипнике. Капните туда маслом и приклейте ее на место.


Настройка вентилятора проверяется очень просто. Необходимо зайти в BIOS компьютера и проверить, включены ли параметры Smart Fun Control в разделе PC Health Status. В зависимости от типа материнской платы, название функции может варьироваться. Она должна быть включена, то есть, иметь статус Enable.


Если на радиаторе скопилось много пыли, это нарушает работу системы, вентиляторам приходится работать с удвоенной силой. Для их очистки существуют специальные баллончики сжатого воздуха, которые можно приобрести в специализированном магазине.


Зная способы, как снизить шум компьютера, вы легко справитесь с этой проблемой. Но если ваше устройство издает звук, напоминающий писк или свист, тогда вашему ПК нужна замена комплектующих. Следите за состоянием своего компьютера или ноутбука и вовремя устраняйте неполадки.

Туалете или кухне предназначена для создания оптимальных условий воздухообмена. Правильно установленный и периодически включающийся (вручную или автоматически) вентилятор позволяет поддерживать допустимый уровень влажности, хотя и создаёт определённый шум. Иногда гудение вентиляционной системы приводит к появлению ощущения дискомфорта и требует принятия мер по решению проблемы. Причин, по которым шумит вентилятор, достаточно много – и большинство из них можно устранить своими силами.

Шум и гудение – признаки проблемы

Обращать внимание на шум рекомендуется ещё до покупки устройства. Значение показателя обычно указывается в руководстве по эксплуатации прибора. Если уровень шума выше допустимых показателей, стоит отдать предпочтение менее шумным моделям, даже, если за улучшенные эксплуатационные характеристики придётся переплатить.

Уровень шума прибора в списке характеристик на сайте

Уровень шума следует проверить и после монтажа вентилятора. Если значение шумовой нагрузки оказалось заметно больше указанного в паспортных данных, проблема может заключаться в неправильной установке. Избежать проблемы можно, доверив установку вентилятора опытному мастеру. Ещё одной причиной шума может быть заводской брак – такой прибор следует вернуть по гарантии.

Проблема считается серьёзной и в тех случаях, когда гудит вентилятор, шум от которого раньше был практически незаметным. Решают её, снимая прибор и проверяя его состояние. При сильном износе движущихся частей вентилятор стоит заменить.

Проверка состояния крыльчатки

Сравнивать уровень создаваемого вентиляцией шума следует с действующими нормативами. Так, в дневное время в жилых помещениях громкость не должна быть выше 40 дБ, в ночное – 30 дБ. Хотя, в отличие от шума другой техники (например, кулера компьютерного процессора), вентилятор в ванной, кухне или туалете работает непостоянно, а, значит, максимальный уровень может достигать 70–80 дБ – но не выше.

Причины шума

Для снижения уровня шума от принудительной вентиляции следует выбирать модели популярных брендов, отличающиеся тихой работой и длительной эксплуатацией. К ним относят марки Silent, Viessmann, Vortice и Maico. Но даже это оборудование может работать не настолько тихо, как ожидалось.

Основные причины повышения уровня шума при работе вентиляторов следующие:

  • повышение уровня вибрации рабочего колеса;
  • неисправность двигателя;
  • усиление трения подшипников;
  • слишком высокая скорость прохождения воздуха через лопасти крыльчатки;
  • нарушение вертикальности или плохое закрепление прибора;
  • плохая сборка (одна из основных проблем при использовании дешёвых моделей);
  • отсутствие профилактического обслуживания прибора.

Профилактические работы

Избежать проблем с установкой и сделать всё правильно поможет обращение к квалифицированному специалисту, способному учесть все нюансы монтажа. Так, например, на потолок допускается устанавливать только модели с шарикоподшипниками, а слишком большая длина патрубка вентилятора приводит к повышению сопротивления воздуха и сильному шуму.

Причинами повышенной громкости работы вентилятора могут стать распространяющиеся по воздуховоду звуковые волны. Работая в обычном режиме, устройство начинает сильно гудеть – в первую очередь, это касается канальных моделей. Проблема заключается уже не только в вентиляторе, а в целой системе, поэтому и меры следует принимать комплексные, включающие звукоизоляцию вентиляционных каналов.

Способы звукоизоляции канального вентилятора

К причинам выбора канальных вентиляторов относят необходимость в принудительной вентиляции на относительно большой площади. Их характерной особенностью является установка не в одну из стен помещения, а внутрь вентиляционного канала. Обслуживают такие приборы сразу несколько помещения, а иногда и всю квартиру или дом. выше, что приводит и к повышению уровня шума.

Канальный вентилятор

Одним из способов решения проблемы шумной работы вентиляционной системы является качественная звукоизоляция воздуховодов. Для этого требуется:

  1. Подготовить необходимые инструменты (силиконовый клей, мягкую резину, валик с длинной ручкой).
  2. Нарезать подходящие по длине полосы резины.
  3. Проклеить ими внутреннюю часть каналов, плотно прижимая к стенкам.

Прорезиненная поверхность позволит увеличить поглощение звука и устранить большую часть шума от канального вентилятора. Однако такой способ не подходит для многоквартирных домов, решать проблему жителям которых придётся с помощью звукоизоляции ближайшей к воздуховоду стенки и уменьшения сечения. Изменение размеров канала ускоряет движение воздуха, что приводит к самопроизвольному гашению звуковой волны в ламинарном воздушном потоке. Стена изолируется тонким слоем минваты или другими пористыми материалами.

Снижение шума настенных моделей в туалете или в ванной

Громко работающий вентилятор в бытовом помещении не вызывает такого чувства дискомфорта, как канальные устройства, установленные в центре дома или квартиры. Однако решать проблему всё равно стоит, если шум от вентиляционной системы заметно увеличился в процессе эксплуатации. Для того чтобы исправить ситуацию используют такие способы:

  • перевод вентилятора на работу с меньшим количеством оборотов, что автоматически снижает шум от прохождения воздуха через его лопасти;
  • проверку правильности установки устройства;
  • установку или замену шумоглушителей;
  • проверить соответствие прибора эксплуатационным условиям (и, при необходимости, заменить).

Замена вентилятора

Неплохим вариантом для создания оптимального воздухообмена в помещениях и сохранения комфортного уровня шума можно назвать специальные бесшумные модели. Громкость их работы не превышает 25–26 дБ. Это не только не мешает пользователям вентиляционной системы, но и соответствуя санитарным нормам.

Принцип снижения шума в таких устройствах заключается в использовании специальных виброизоляторов, снижающих вибрацию вращающихся элементов вентилятора. Подшипники прибора не требуют обслуживания и обеспечивают бесшумную непрерывную работу на протяжении 20–30 тыс. часов. При постоянно включенной системе принудительной вентиляции эксплуатационный срок оборудования достигает 3–4 лет, при периодическом использовании – больше 10 лет.

Установка бесшумной модели

Выбор подходящего прибора и специальные методы звукоизоляции позволят снизить громкость работы принудительной вентиляционной системы. И, хотя полностью избавиться от шума не получится, его уровень будет соответствовать нормам. Для повышения эффективности работ по устранению шумовой нагрузки от работающего вентилятора их рекомендуется доверить специалистам.

Noise Reduction Methods for Axial Fans

S. V. Karadzhi , N.E. Bauman Moscow State Technical University
Yu. G. Moskovko , LLC “INNOVENT”

Keywords : ventilation system, aerodynamic noise, harmonic, fan rotor

Noise is an important parameters of the majority of technical facilities, affecting their operating properties, environmental efficiency and competitive ability. The main noise sources in ventilation and air conditioning systems are fans. The article offers various methods for reduction of fan noise.

Описание:

Шум является важным параметром большинст ва технических объекто в, влияющим на их эксплуатационные свойст ва, экологичность и конкурентоспособность . В системах вентиляции и кондициониро вания осно вными источниками шума являются вентиляторы . В статье предложены различные способы снижения шума вентиляторо в.

Способы снижения шума осевых вентиляторов

С. В. Караджи , МГТУ им. Н.Э. Баумана, otvet@сайт

Ю. Г. Московко , ООО «ИННОВЕНТ»

Шум является важным параметром большинства технических объектов, влияющим на их эксплуатационные свойства, экологичность и конкурентоспособность. В системах вентиляции и кондиционирования основными источниками шума являются вентиляторы. Часто ограничения, накладываемые на уровни их шума, являются решающим фактором, определяющим технические характеристики объекта в целом, поэтому снижению аэродинамического шума вентиляторов уделяется большое внимание. Что на настоящий момент предлагает наука и что реализовано в конструкциях? Ответ на эти вопросы читатель найдет в предлагаемой статье.

Для минимизации шума вентиляционной системы (без использования звукопоглощающих устройств) должны быть выполнены несколько условий. Во-первых, вентиляционная система должна быть выполнена таким образом, чтобы иметь минимальные аэродинамические потери. Во-вторых, необходимо выбрать тип вентилятора (радиальный, осевой) и затем грамотно подобрать на расчетный режим, собственно, сам вентилятор. И наконец, должны быть соблюдены рекомендации по оптимальной компоновке вентилятора в системе, обеспечивающие равномерный профиль скорости на входе/выходе из вентилятора. Желательно при этом, чтобы вентилятор был малошумный. В настоящей статье приведен краткий обзор работ по способам снижения аэродинамического шума в осевых вентиляторах и ряд конструкций существующих малошумных вентиляторов.

Аэродинамические шумы могут быть вызваны различными типами источников (монопольными, дипольными, квадрупольными). Эти источники имеют разное происхождение, но их можно разделить на две большие группы: источники, вызывающие широкополосный шум (в котором все частоты равно представлены), и источники, вызывающие дискретный (тональный) шум (излучение сосредоточено только на некоторых частотах).

К источникам, вызывающим широкополосный шум осевого вентилятора, относятся шум турбулентного пограничного слоя на лопатках; вихревой шум, связанный со следами за лопатками. К источникам дискретного шума относятся шум вращения (шум нагрузки и вытеснения), связанный с вращением лопаток рабочего колеса; шум взаимодействия, связанный со взаимодействием рабочего колеса с неподвижными элементами проточной части. Большую долю в шуме вентилятора может составлять шум, связанный с дисбалансом рабочего колеса, но так как он не является аэродинамическим, то в настоящей статье не рассматривается.

Снижение турбулентного и вихревого шума является весьма сложной задачей ввиду того, что шум этого типа связан с обтеканием лопаток рабочего колеса. Для его снижения необходима оптимизация формы лопаток рабочего колеса, с целью обеспечения безотрывного обтекания по всей длине лопатки. Однако таким образом можно достичь снижения шума в той или иной мере главным образом на расчетном режиме работы вентилятора.

В ряде случаев, например если лопатки имеют неоптимальную аэродинамическую форму, шум пограничного слоя может иметь дискретные составляющие . В этом случае для снижения шума используют лопатки с зубчатой формой выходной кромки (рис. 1). Интересно отметить, что существуют также и вентиляторы с лопатками, имеющими пилообразные входные кромки, которые в рекламных материалах также преподносятся как малошумные.

Одним из методов снижения широкополосного шума может быть проектирование вентилятора на минимально возможную частоту вращения. Известно, что турбулентный шум является источником квадрупольного типа, и его звуковая мощность пропорциональна ~u 8 , а вихревой шум является источником дипольного типа, и его звуковая мощность ~u 6 , где u – окружная скорость. При уменьшении частоты вращения также снижается и шум вращения, который имеет дипольную (шум нагрузки) и монопольную (шум вытеснения) природу, и их звуковая мощность пропорциональна ~u 6 и ~u 4 соответственно.

Существуют методики, позволяющие проектировать осевые вентиляторы на меньшие частоты вращения за счет увеличения аэродинамической нагрузки на лопатки . Так, например, за счет ряда мероприятий, включая и уменьшение расчетной частоты вращения, шум одного из вентиляторов системы жизнеобеспечения МКС «Альфа» был снижен на 8 дБА . Так как в этом случае изменяются уровни и распределение давления на лопатках рабочего колеса и, соответственно, широкополосный шум, этот способ не всегда приводит к ожидаемому результату.

Дискретные составляющие акустического спектра, связанные с шумом вращения и взаимодействия, как правило, имеют на 15–20 дБ более высокие уровни, чем широкополосный турбулентный и вихревой шумы. Поэтому дискретный шум оказывает наиболее раздражающее влияние на людей.

Одним из направлений по снижению шума вращения, интенсивно развивающимся в настоящее время, является применение лопаток рабочего колеса с искривленной осью совмещения профилей. На рис. 2 показана лопатка и сигналы шума вращения от ее различных сечений (имеющие различную фазу из-за пространственной формы лопатки). Справа показана векторная диаграмма суммы сигналов, из которой видно, что при правильном сочетании фаз и амплитуд сигналов шум вращения может быть сильно снижен. Идея формирования сдвига фаз акустических волн от различных сечений лопаток рабочего колеса за счет изменения формы оси совмещения профилей представлена в . В качестве примера на рис. 3 изображено колесо вентилятора с искривленной по направлению вращения осью совмещения профилей.

Этот эффект широко используется в осевых вентиляторах выносных конденсаторных блоков сплит-систем, у которых на периферии входные кромки лопаток имеют ярко выраженную клювообразную форму.

В вентиляторах, выполненных по схеме «колесо (К) плюс спрямляющий аппарат (СА)», вследствие взаимодействия лопаточных венцов друг с другом пространственная форма лопаток СА оказывает большое влияние на уровень шума вентилятора. Так, в работах и приводятся результаты исследований по влиянию наклона лопаток СА, при определенном наклоне лопаток отмечено снижение шума. Следует отметить, что в настоящее время имеются противоречивые данные о влиянии пространственной формы оси совмещения профилей на шум осевых вентиляторов , поэтому вид искривленных лопаток не всегда свидетельствует о том, что вентилятор действительно является малошумным, как об этом заявляют в рекламных материалах.

Используется также способ уменьшения шума вращения за счет установки лопаток с неравномерным шагом . При неравномерном шаге от каждой из лопаток будет излучаться последовательность импульсов звукового давления через неравномерные промежутки времени, что приводит к снижению и «размыванию» дискретных составляющих (рис. 4). Эффект снижается при увеличении количества лопаток рабочего колеса. Наиболее широкое применение колеса такого типа нашли в автомобилестроении.

В вентиляторах с входным направляющим аппаратом (ВНА) имеет место шум взаимодействия, который возникает при взаимодействии следов или других элементов проточной части, стоящих перед колесом, с вращающимися лопатками рабочего колеса. Стоит отметить, что имеет место также и обратное влияние, то есть рабочее колесо влияет на ВНА, аналогично и спрямляющий аппарат (СА) влияет на рабочее колесо, так как такого рода взаимодействия распространяются вверх по потоку.

Большое значение имеет соотношение между числом лопаток в ВНА или СА и колесом. Для минимизации шума взаимодействия на определенных гармониках при различных частотах вращения в соответствии с должно соблюдаться условие

(1)

где M u = u k /c 0 ;
M ca = c a /c 0 ;
u k – окружная скорость концов лопаток;
c a – осевая скорость;
к m – волновой параметр;
m = │iz PK + kz АП │;
k – коэффициент, пробегающий значения всех целых чисел;
i – номер гармоники.

В этой же работе даны номограммы для выбора благоприятного соотношения чисел лопаток колеса и аппаратов.

В книге предлагается упрощенное выражение для выбора соотношения количества лопаток рабочего колеса и спрямляющего аппарата:

(2)

где n – частота вращения;
D – диаметр рабочего колеса;
с – скорость распространения импульсов давления.

Необходимо отметить, что при выборе соотношения числа лопаток в аппаратах и колесе невозможно обеспечить снижение уровня шума на всех гармониках лопаточной частоты.

Конструктивные элементы вентилятора: стойки крепления двигателя, сам электродвигатель (если он установлен перед колесом) и др. – также оказывают сильное влияние на шумообразование. Так же, как и ВНА или СА, они создают вихревые следы и турбулизируют поток до или после рабочего колеса, что может привести к увеличению уровня шума. На уровень шума влияют расположение конструктивных элементов относительно колеса, соотношение числа стоек крепления и числа лопаток, расстояние до лопаток колеса и т.д. На тему ротор-статор-взаимодействия проведено много расчетных и экспериментальных исследований , из которых следует, что полной ясности в этом вопросе нет.

Заключение

а) у вентилятора схемы К:

  • на входе перед колесом на расстоянии менее хорды лопатки расположена сетка, стойки крепления электродвигателя;
  • число стоек крепления электродвигателя равно или кратно числу лопаток; стойки крепления электродвигателя расположены от колеса на расстоянии менее чем 0,5 хорды лопатки колеса;

б) у вентилятора с аппаратами ВНА или СА:

  • число лопаток аппаратов совпадает с числом лопаток колеса или же кратно им;
  • лопатки аппаратов расположены от колеса на расстоянии менее чем 0,5 хорды лопатки колеса.

Литература

  1. Аэродинамический шум в технике // под ред. Р. Хиклинга, 1977. 332 с.
  2. Jay Patel, Kingston, N. Y., United States Patent, 4,089,618, May 16, 1978.
  3. Митрофович В.В. Определение предельных расчетных параметров осевых вентиляторов с высоким статическим КПД // Промышленная аэродинамика. М. : Машиностроение, 1991. Вып. 4 (36). С. 260–280.
  4. Сустин С. А., Митрофович В.В., Исакович С.А. Разработка экспериментального малошумного вентилятора // Тезисы XIII всероссийской научно-технической конференции «Газотурбинные и комбинированные установки и двигатели», МГТУ им. Н.Э. Баумана, 2008 г.
  5. Мунин А. Г., Самохин В.Ф., Шипов Р.А. и др. Авиационная акустика: в 2 ч. Ч. 1. Шум на местности дозвуковых пассажирских самолетов и вертолетов. М. : Машиностроение, 1986. 248 с.
  6. Harvey H. Hubbard. Aeroacoustics of flight vehicles, Volume 1, Noise sources // NASA Reference publication 1258, vol. 1, WRDC Technical report 90–3052, 1991. 592 p.
  7. Belamri T., Kouidri S., Fedala D. and Rey R. Comparative study of the aeroacoustic behavior of two axial flow fans with different sweep angles // Paper FEDSM2005–77242, Proceedings of ASME FEDSM’05, 2005 ASME Fluid Engineering Summer Conference Houston, TX, USA, June 16–23, 2005.
  8. Jifu Lu Xinli Wei, Yang Li. Research on aerodynamics and exit flow field of skewed fan-rotors // Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific. Рp. 1–4.
  9. Bamberberger Konrad, Carolus Thomas. Optimization of axial fans with highly swept blades with respect to losses and noise reduction // Fan 2012, Senlis (France), 18–20 April 2012, 12 p.
  10. Хорошев Г. А., Петров Ю.И., Егоров Н.Ф. Борьба с шумом вентиляторов. М. : Энергоиздат, 1981. 143 с.
  11. Брусиловский И.В. Аэродинамика и акустика осевых вентиляторов // Труды ЦАГИ им. проф. Н.Е. Жуковского. Вып. 2650. М., 2004. 275 с.
  12. Lee, J. and Nam, K. Development of Low-Noise Cooling Fan Using Uneven Fan Blade Spacing, SAE Technical Paper 2008–01–0569, 2008.
  13. Lu H. Z., Lixi Huanga, R. M.C. So and J. Wang. A computational study of the interaction noise from a small axial-flow fan // J. Acoust. Soc. Am., Vol. 122, No. 3, September 2007. Рp. 1404–1415.
  14. Sawyer S., Nallasamy M., Hixon R., Dyson R.W., Koch L.D. Computational Aeroacoustic Prediction of Discrete-Frequency Noise Generated by a Rotor-Stator Interaction // 9th AIAA/CEAS Aeroacoustics Conference and Exhibit 2003. 18 p.
  15. Woodward, R. P., Elliott, D. M., Hughes, C. E., and Berton, J.J. Benefits of Swept and Leaned Stators for Fan Noise Reduction // AIAA-99–0479, 1999. 12 p.

В течение последних двух лет мы наблюдаем технологический прорыв в области производства радиаторов процессорных кулеров: широкое распространение получили экструзионные радиаторы с коэффициентом консоли 18 и выше, стали обыденными технологии вакуумной пайки, bonded/fabricated fins и folded fins , считавшиеся ранее почти что экзотическими. Однако базовый принцип, на котором зиждется функционирование кулеров, остается прежним – воздушное охлаждение на основе вынужденной конвекции. И как раз в части этой пресловутой вынужденной конвекции уже давно ничего кардинально нового не появляется: производители идут по проторенному пути увеличения геометрических размеров вентиляторов, количества лопастей и скорости вращения крыльчатки. В результате, кулер, оборудованный мощным вентилятором типоразмера 60х60х25 мм со скоростью вращения крыльчатки более 6000 RPM, становится наиглавнейшим источником шума в компьютере, начисто заглушая остальные весьма "громкоголосые" устройства, будь то вентиляторы в блоках питания, корпусные вентиляторы, жесткие диски и т.п. Несомненно, такое положение дел настойчиво требует от нас проведения не только тщательных температурных тестов, но и объективного анализа шумовых характеристик кулеров.

В недавнем продукции Thermaltake мы уже кратко коснулись этой темы и привели результаты наших измерений, не вдаваясь, однако, в методические детали. Теперь же мы подробно рассмотрим все основные моменты, относящиеся к акустическим свойствам кулеров, и дадим ответ на три сакраментальных вопроса:

  • Чем измерять?
  • Как измерять?
  • Как получить достоверный результат?

Что ж, приступим!

Исходные предпосылки

А начнем мы, пожалуй, с выяснения причин возникновения шума (нежелательного звука ) при функционировании вентиляторов, установленных в компьютерных системах (в составе процессорных кулеров или же отдельно в компьютерном корпусе). Существует всего два основных механизма возникновения шума вентиляторов, и соответственно этот шум принято разделять на две категории:

  • аэродинамический шум
  • механический шум

Аэродинамический шум . Если основная причина возникновения аэродинамического шума, скажем так, тривиальна (вращение крыльчатки вентилятора), то физика этого явления достаточно сложна. Поэтому я не буду особенно вдаваться в детали, а лишь отмечу, что источником шума в этом случае являются вихри в турбулентном пограничном слое , возникающем на поверхности лопастей крыльчатки. Интенсивность шума здесь зависит от угла атаки и скорости вращения крыльчатки (чем больше угол атаки и выше скорость вращения, тем больше оказывается интенсивность аэродинамического шума). Спектр аэродинамического шума вентиляторов является непрерывным (широкополосный шум) и, как правило, имеет максимальную интенсивность на частоте:

F max = K*(V b /d*cosα) ,

где K – коэффициент, определяемый конфигурацией вентилятора; V b – линейная скорость лопасти (м/с); d – максимальная толщина лопасти; α – угол атаки.

Дополнительным источником аэродинамического шума являются препятствия на входе и, особенно, на выходе вентилятора. В частности, таким "препятствием" является радиатор кулера. Основная причина шума в этом случае – те же самые вихри в турбулентном пограничном слое, только теперь пограничный слой образуется уже на поверхности ребер радиатора. Интенсивность шума зависит здесь от скорости воздушного потока и конфигурации препятствий.

Механический шум . Как следует из названия, источником такого шума являются подшипники вентиляторов. Среди пользователей бытует мнение, что механический шум возникает только вследствие износа или конструктивных дефектов подшипников и должен практически отсутствовать у исправных вентиляторов. В реальной жизни все обстоит иначе: идеальных подшипников, конечно же, не бывает! :)

Если взять в рассмотрение стандартный подшипник скольжения, то и на поверхности вала, и на внутренней поверхности втулки обязательно присутствуют микроскопические трещины, раковины и т.п. Очевидно, что при этом в паре вал-втулка возникает трение, и без шума тут уже не обойтись. Определенный шумовой вклад вносят и стопорные шайбы, которые вращаются (точнее говоря, проворачиваются) вместе с валом.

Что же касается конструктивных дефектов подшипника, то они могут серьезно усугубить ситуацию и значительно увеличить интенсивность шума. Наиболее существенным из них в случае подшипника скольжения является дисбаланс ротора (крыльчатки), который обычно приводит к так называемой эллипсности втулки (на поперечном срезе внутренняя поверхность втулки имеет форму эллипса вместо окружности). Такой дефект является причиной появления четко выраженных тонов в низко- и среднечастотной области спектра шума подшипника. Интенсивность шума при этом увеличивается, и в субъективном ощущении он становится весьма раздражающим. Также очень неблагоприятно влияют на акустические свойства вентилятора на подшипнике скольжения некачественная смазка (или ее недостаточность) и большой зазор между валом и втулкой.

Если обратиться теперь к подшипникам качения, то сама их конструкция предрасполагает к шуму. Ведь это целый комплекс трущихся деталей: внутреннее и внешнее кольцо (обоймы), тела качения (шарики), сепаратор. Более того, подшипники качения, в отличие от подшипников скольжения, очень восприимчивы к внешним механическим воздействиям (удары, падения и т.п.). И, как следствие, имеют богатый "букет" дефектов, что обычно приводит к более высокой интенсивности шума. Поэтому нет ничего удивительного в том, что вентиляторы на подшипниках качения даже в нормальном (исправном) состоянии обычно на 2-3 дБА шумнее своих "близнецов" на подшипниках скольжения.

Сейчас же мы займемся рассмотрением нашего первого сакраментального вопроса и определим, какое средство измерений можно использовать в нашей исследовательской практике.

Его Величество Шумомер

Международные стандарты, определяющие средства и методы измерения шума, появились относительно недавно – в конце 60-х. Но они стали результатом кропотливого долголетнего труда многих и многих исследователей, сложивших свои головы (в переносном смысле, конечно) во славу торжества науки. А ведь потрудиться было над чем!

Главной проблемой на пути получения корректных количественных оценок стал, так сказать, человеческий фактор, ведь шум (да и звук вообще) – явление скорее психофизиологическое, чем чисто физическое. Поэтому для количественной оценки шума нужно было принять во внимание не только физические свойства самого явления, но и его восприятие человеком и влияние на организм. Действительно, человеческое ухо, в терминах электроники, является нелинейным преобразователем звуковых колебаний и играет роль сложного полосового фильтра (даже целого комплекса фильтров): громкость низкочастотных, среднечастотных и высокочастотных тональных звуков с одинаковым уровнем звукового давления в субъективном восприятии будет различна (тон средней частоты кажется громче тонов низкой и высокой частот). Совершенно естественно, что ответ на вопрос, как учесть психофизику шума в его количественных оценках, можно было получить только опытным путем.

В начале 30-х годов группой американских ученых были проведены важнейшие практические исследования зависимости субъективной громкости звука от его частоты. Результатом этих исследований стало семейство кривых, показывающих различие уровней интенсивности звука для чистых тонов, кажущихся одинаково громкими. В дальнейшем эти кривые получили название контуров громкости (второе название – кривые Флетчера-Мэнсона).

Рис. 1. Контуры одинаковой громкости

На основе контуров одинаковой громкости (точнее, контуров, отвечающих уровням 40, 70 и 100 дБ) было предложено ввести в исследовательскую практику три методики частотной корректировки уровней звукового давления для учета особенностей восприятия звука человеком и получения простой одно-числовой характеристики вместо полного частотного анализа шума (в октавных или третьоктавных полосах частот) или же дополнительно к нему. Сейчас эти три методики именуются частотными характеристиками коррекции (взвешивания) A, B и C .

Рис. 2. Частотные характеристики корректирующих схем A, B и C

Надо заметить, что стандартом де-факто стала характеристика А, и результаты измерений уровней звука, скорректированных именно по этой характеристике, фигурируют в подавляющем большинстве нормативных и технических документов. Что касается характеристик B и С, то первая канула в лету, вторая же все еще находит применение в некоторых отраслях (в частности, при исследовании шума реактивных двигателей и военной техники).

Итак, первое требование к нашему шумомеру определено: наличие в нем хотя бы корректирующей схемы А. Ну, с этим проблем не будет, поскольку такая "примочка" есть практически во всех шумомерах (реализовать ее в "железе" не составляет особого труда). Далее, достаточно ли нам будет ограничиться только уровнем звука L A , скорректированным по характеристике A, и отказаться от проведения частотного анализа шума? В общем-то, достаточно, если мы хотим лишь ориентировочно подтвердить (или опровергнуть) соответствие конкретного кулера установленным гигиеническим нормам (почему мы имеем право в большинстве случаев "подменять" шум всей системы в целом шумом одного только кулера, я расскажу чуть позже). Но наша цель состоит не только в этом. Более важной задачей для нас является объективное сравнение шумовых характеристик различных кулеров, и в этом случае без проведения частотного анализа шума (в октавных или же третьоктавных полосах частот) о таком сравнении даже и заикнуться-то нельзя. Поэтому частотный анализ просто обязан быть неотъемлемой частью нашего эксперимента.

Что же, проясняется еще одно, второе требование к шумомеру: для наших целей обязательно наличие в нем технических средств частотного анализа шума. И вот тут уже могут возникнуть крупные проблемы (в основном, финансового плана):

  1. Наиболее гибко провести частотный анализ шума можно только посредством специализированных анализаторов спектра, которые, как правило, чудовищно дороги (стоимость только программных средств обработки результатов эксперимента может насчитывать не одну тысячу "вечнозеленых").
  2. На практике обычно ограничиваются анализом шума в октавных полосах частот, и большинство современных прецизионных шумомеров имеют встроенные октавные полосовые фильтры, позволяющие проводить такой анализ. Шумомеры со встроенными октавными фильтрами, конечно, дешевле анализаторов спектра. Но и их цена лежит в пределах 5-10 тысяч, которые, как известно, на дороге не валяются.
  3. В некоторых случаях может потребоваться анализ шума в третьоктавных полосах частот. Фильтры, позволяющие проводить такой анализ, есть далеко не во всех шумомерах и зачастую являются опцией, поставляемой по отдельному заказу. Самое интересное, что эта "опция" обычно обходится заказчику в весьма кругленькую сумму и в очень "запущенных" случаях может составлять не менее 70-100% от стоимости самого шумомера!

Ну и, наконец, есть еще одно, уже третье по счету требование к нашему измерительному оборудованию: оно должно быть точным и иметь хорошую стабильность параметров. Здесь также возможно возникновение проблем, поскольку не все (даже относительно дорогие) шумомеры укомплектованы качественными высокочувствительными микрофонами и имеют действительно низкий уровень собственного шума, вносимого измерительным трактом.

Да, проблем масса. Но их все равно нужно было как-то решить. Скажу без лишней скромности: нам удалось это сделать, причем без особых потерь как в качестве, так и в количестве;-)

Мы не стали гнаться за передовой измерительной техникой, а остановили свой выбор на "старичке" Bruel&Kjaer Type 2203, который является надежным аналоговым прибором, успешно "отпахавшим" почти двадцатилетний стаж работы без единого замечания.

Почему именно шумомер Bruel&Kjaer Type 2203? Потому, что данный прибор:

  • попал к нам в руки на наиболее приемлемых условиях;-)
  • соответствует 1 классу точности по ГОСТ 17187-71 и занесен в Государственный реестр средств измерений
  • позволяет проводить оперативную калибровку внутренним источником эталонного напряжения
  • по качеству измерительного тракта не намного уступает самым современным шумомерам от Bruel&Kjaer и Larson Davis

Есть еще один очень важный момент, сыгравший определяющую роль в выборе этого прибора: наш шумомер был частью, так сказать, VIP-комплекта. И попал к нам именно в его составе, включающем, кроме самого шумомера, дополнительные наборы октавных и третьоктавных фильтров – Type 1613 и Type 1616, соответственно.

В итоге, с привлечением прецизионного шумомера Bruel&Kjaer Type 2203 все три вышеуказанных требования, предъявляемые к нашему измерительному оборудованию, были практически полностью удовлетворены.

Конечно, одно только средство измерения (пусть даже самое современное и высокоточное) будет бесполезной игрушкой без хорошо выверенной методики проведения измерений, иными словами, без продуманного и качественно поставленного эксперимента. И, как вы правильно понимаете, речь заходит о том, что пора уже рассмотреть нашу методику измерения шума и ответить на второй сакраментальный вопрос:)

Постановка эксперимента

Процедура корректных измерений шума существенно осложняется тем, что для их проведения требуется строго определенная акустическая обстановка (условия измерений), будь это метод определения уровня звуковой мощности источников шума в свободном звуковом поле или же, наоборот, в диффузном звуковом поле . Единственный метод, который не зависит от внешних условий при проведении измерений – это определение уровня звуковой мощности на основе интенсивности звука . Но для его реализации требуется специализированный шумомер, оборудованный двухмикрофонным интенсиметрическим зондом. Подобного шумомера в нашем распоряжении просто-напросто нет.

Поэтому, исходя из возможностей нашего оборудования (и наших собственных возможностей, которые далеко не всегда совпадают с нашими желаниями:)), при выборе методики эксперимента мы остановились на методе определения шумовых характеристик источников шума в свободном звуковом поле над звукоотражающей плоскостью (ГОСТ 12.1.026-80). Почему был выбран именно этот метод? Причин несколько:

Во-первых, данный метод не очень требователен к условиям проведения измерений. Эксперимент может быть поставлен как в полузаглушенных камерах, так и на открытых площадках и в помещениях.

Во-вторых, микрофон нашего шумомера имеет оптимальную (линейную) частотную характеристику именно в условиях свободного звукового поля.

В-третьих, данный метод позволяет ограничиться частотным анализом шума в октавных полосах частот вместо анализа в третьоктавных полосах. Для наших целей в большинстве случаев частотный анализ в третьоктавных полосах будет неоправдан как по затраченному на его проведение времени, так и по добротности результата.

Ну и, наконец, в-четвертых, мы имеем доступ к полузаглушенной камере.

Теперь кратко о самой процедуре измерений (все подробности проведения подобных измерений можно найти в тексте ГОСТа). Эксперимент проводится в полузаглушенной камере (заглушенная камера со звукоотражающим полом) с геометрическими размерами 5х5х4 м. Перед проведением измерений уровня шума кулеров оценивается уровень фонового шума (измеряется в центре и по периметру помещения в четырех точках на расстоянии 1 м от стен, полученные результаты усредняются). Далее кулеры закрепляются в центре помещения на высоте 0,35 м на упругом подвесе, установленном на невысоком штативе. В качестве поверхности измерения выбрана полусфера с радиусом 1,2 м, а количество точек измерения и их расположение на поверхности полусферы соответствуют требованиям ГОСТа. Первоначально производится измерение уровня звука L A в каждой точке. По усредненному результату принимается решение о возможности проведения дальнейших измерений или же о необходимости внесения поправок Δ к измеряемым уровням звука (звукового давления) в соответствии с условиями Таблицы 1.

Таблица 1

Если разность ΔL более 6 дБА, то в каждой точке проводится серия измерений уровней звукового давления в октавных полосах частот и уровня звука L A ; каждое измерение длится 3 минуты и регистрируется среднее значение показаний прибора. Рабочие результаты по всем точкам претерпевают в дальнейшем математическую обработку (анализируются и усредняются) для получения конечного результата исследования – скорректированных и усредненных уровней звукового давления в октавных полосах частот или уровней звука L A . Определение уровней звуковой мощности не производится, но по необходимости эта процедура может быть с легкостью проведена на основе наших конечных результатов исследования.

Итак, похоже, пора заняться рассмотрением методики обработки результатов измерений и ответить на третий сакраментальный вопрос.

Первоначально массив результатов измерений анализируется, и по условиям Таблицы 1 вносятся необходимые коррективы, учитывающие фоновый шум. Далее результаты усредняются по формуле:

Где L m – усредненный уровень звукового давления в октавной полосе (или уровень звука L A); L i – i-й уровень звукового давления в октавной полосе (или уровень звука L A); n – число точек измерений; K – постоянная, учитывающая влияние отраженного звука (экспериментально определенное значение этой постоянной составляет 0,9 дБ, при расчетах округляется до 1 дБ).

Отечественный ГОСТ ограничивается представлением результата измерений только в виде L m . Однако родственный зарубежный стандарт (ISO 3744) настаивает на представлении результата в несколько другой форме:

L d = L m + 1,645*σ r ,

где L d – протокольный результат (конечный результат); σ r – СКО результатов измерений.

Добавка к уровню L m фактически учитывает погрешность измерений (думаю, множитель 1,645 хорошо знаком специалистам-метрологам). Для нашего метода измерений величина параметра σ r , определенная стандартом ISO 3744, составляет 1,5 дБ. Мы проявили некоторую вольность и слегка увеличили значение данного параметра (погрешность измерений иногда лучше немного преувеличить, чем приуменьшить). В результате, соотношение, которое используется для представления результата измерений, выглядит очень просто:

L d = L m + 3 .

Полученные значения L d округляются до ближайшего целого. Итогом обработки результатов является диаграмма, которая и публикуется в обзорах.

Дополнительный анализ

"Ладно, – может возразить самый въедливый и критически настроенный читатель, – все это хорошо. Но на каком основании вы измеряете шум одного только кулера, отдельно от компьютерной системы в целом, и после этого сравниваете полученные результаты с ПДУ, являющимися гигиеническими нормами именно общего шума компьютера, а не отдельных его компонентов?!"

Не исключаю, что подобных критических настроений у наших читателей могло бы и не возникнуть, тем не менее, вопрос правомерности "подмены" шума всей системы в целом шумом только кулера чрезвычайно важен и требует рассмотрения. Что ж, давайте разберемся с этим делом!

Естественно, для конечного пользователя было бы интересно, каким будет уровень шума в его конкретной системе при установке какого-то конкретного кулера. Но дать такую информацию (причем объективную и точную) не представляется возможным. Покопаемся немного в прайсах контор розничной торговли комплектующими. И что мы там увидим? Не менее тысячи наименований различных материнских плат, жестких дисков, видеокарт, корпусов ATX, наконец! А ведь все эти компоненты оказывают самое непосредственное влияние на общий уровень шума системы, и при замене, скажем, жесткого диска или корпусного БП уровень этого шума может ощутимо измениться. Охватить весь спектр возможных конфигураций просто нереально – провести подобные измерения не решился бы даже Сизиф! ;-)

Есть, конечно, методологический принцип наихудшего варианта: выбираем предварительно самую шумную компьютерную систему и проводим измерения уже на ее основе. Полученный при этом результат будет показывать самый высокий уровень шума из всех возможных и может считаться вполне объективной точкой отсчета для дальнейших оценок шума более "спокойных" систем. Но как выбрать этот пресловутый самый наихудший (в акустическом смысле) вариант из всего многообразия конфигураций? Ответа на такой вопрос нет, поскольку шумность системы зависит не только от самой этой системы, но и от кулера, установленного в ней. Речь здесь идет о структурной вибрации , упомянутой в начале статьи. Дело в том, что кулер является не только источником шума, но и источником вибрации. Вибрационные колебания (которые, как правило, лежат в диапазоне от 10 до 500 Гц) передаются на корпус через жесткие сочленения (крепеж кулера, крепеж материнской платы) и являются причиной дополнительного шума с частотами вплоть до 4 кГц и выше, в зависимости от конструкции корпуса (вследствие, так сказать, гармонического размножения колебаний). Поэтому вполне вероятно, что достаточно тихая система может серьезно подкачать в акустическом смысле при установке какого-то другого кулера с более высоким уровнем вибрации.

Ситуация, конечно, непростая. Но выход из нее был найден! Мы не стали жестко упираться в методологические принципы, а провели дополнительные исследования, выбрав несколько систем в четырех различных корпусах (два брэндовых и два кооперативно-китайских) и два относительно "виброактивных" кулера – GlobalWin FOP38 и Thermaltake Mini Copper Orb.

Результаты исследования оказались достаточно любопытными:

  1. Уровень звука L A системы без кулера (вместо него использовался медный радиатор Thermalright SK-6) не превышал 43-45 дБА (даже в корпусе Asustek FK600).
  2. При установке кулера Thermaltake Mini Copper Orb уровень звука всей системы составил 49-52 дБА (в зависимости от корпуса), т.е. увеличился относительно шума кулера в чистом виде всего на 1-4 дБА.
  3. При установке кулера GlobalWin FOP38 уровень звука составил 54-56 дБА, т.е. уменьшился относительно шума кулера на 1-3 дБА!

На основании результатов дополнительного частотного анализа шума, проведенного для каждого случая, мы пришли к следующим выводам:

  1. Хотя большинство пользователей полагает, что компьютерные корпуса являются своего рода резонаторами, увеличивающими шум, такое положение дел действительно не во всех случаях: для кулеров с чрезмерно высоким уровнем шума (более 55 дБА) наблюдается его ослабление!
  2. Корпуса склонны проявлять свойства полосового фильтра (скорее, фильтра нижних частот) – уровни звукового давления в третьоктавных полосах со среднегеометрическими частотами 5000 Гц и выше (а для "толстостенных" брэндовых корпусов – и от 3150 Гц) оказались ниже соответствующих уровней для "просто" кулера минимум на 1-2 дБ.
  3. Уровни в самых нижних частотах, наоборот, оказались "подтянутыми" максимум на 5-6 дБ. Этот эффект в значительной мере проявил себя именно в брэндовых корпусах.
  4. На средних частотах ситуация была неоднозначной: китайские корпуса поднимали уровни звукового давления примерно на 3-6 дБ, брэндовые же оставляли их практически без изменения (повышение в пределах 1 дБ) или даже понижали.

Итак, что же мы имеем в итоге?

Во-первых, уровень звука L A компьютерных систем, начиненных кулерами с высокопроизводительными вентиляторами, практически не отличается от уровня звука L A собственно самих этих кулеров (в пределах погрешности измерений, указанной в разделе Обработка и анализ результатов измерений)! Поэтому мы имеем полное право сравнивать наши результаты с гигиеническими нормами шума (правда, сравнение это является только ориентировочным ).

Во-вторых, при установке кулеров в корпуса меняется спектральный состав шума: наблюдается его сосредоточение в низкочастотной и среднечастотной областях.

Наконец, в-третьих, "толстостенные" брэндовые корпуса в субъективном отношении оказываются предпочтительней, чем кооперативно-китайские: у систем в "левых" корпусах шум смещен и усилен в среднечастотной области акустического спектра, соответственно, кажется более раздражающим, чем преимущественно низкочастотный шум систем в брэндовых корпусах, несмотря на почти что одинаковый в некоторых случаях уровень звука L A .

Ну что же, ответы на три сакраментальных вопроса, сформулированных в начале статьи, даны. Можно с более или менее спокойной совестью делать окончательные выводы;-)

Выводы

Наш метод практически полностью соответствует требованиям ГОСТ 12.1.026-80. Благодаря этому, мы получаем достоверные и воспроизводимые результаты измерений шума, позволяющие проводить объективный сравнительный анализ кулеров по их шумовым характеристикам. Более того, на основе наших результатов можно давать ориентировочные оценки шума и всей компьютерной системы в целом в случае использования кулеров, оборудованных высокопроизводительными вентиляторами. Что же касается конструктивной критики в адрес нашей методики, то она, как всегда, только приветствуется! ;-)

При подготовке статьи были использованы материалы книги " " / Ed. Barry Truax, Second Edition, Cambridge Street Publishing, 1999

Вечера всем доброго. На подходе очередная статья. Сегодня тема будет касаться физической стороны компьютера, а именно шума работы вентиляторов. Работая в тех.поддержке заметил, что очень много пользователей обращаются с просьбой уменьшить шум от работы их компьютера. Для начала выяснить причину возникновения этого повышенного шума. Возможно, что просто компьютер давно не чистили и не смазывали. Но есть и второй вариант этой причины — слетели/изменили/сбросили настройки в BIOS. Касательно первой части, то нет ничего сложного взять пылесос и тряпку и убрать всю грязь и пыль. Касательно второго случая требуются некоторые навыки ориентирования в BIOS. Как раз таки сейчас об этом я Вам и расскажу.

Снижаем шум компьютера через BIOS.

Итак мы убедились, что компьютер чистый, а вентиляторы исправны. Теперь включаем компьютер и нажатием спец.клавиши, попадаем в меню настройки BIOS. Узнать какую кнопку жать Вы можете по стартовой картинке, или методом перебора. Наиболее часто это следующие кнопки: Del, F2 и F10.

В моём случае попалась материнская плата ASUS, у которой кнопка входа в БИОС — Del.

Сразу же мы попадаем на главную вкладку -Main, для нас тут нет ничего ценного, поэтому стрелкой влево перебираемся до Power.

Остановившись на этой вкладке мы начинаем ходить по пунктам и выбираем «Hardware Monitor».

Откроется страница, где будет целый список различных надстроек. Да и также возможно, что пункт CPU Q-Fan Control будет содержать надпись Disabled, мы можем это изменить пройдя стрелкой вниз до него и нажав Enter.

Ну и соответственно теперь уже раскроется полный список возможных настроек. Тут представлены как настройки для вентилятора процессора, так и корпусных вентиляторов, кстати корпусные обозначены словом chassis.

Среди всех представленных очень важный пункт для нас это CPU Fan Profile. Тот самый профиль с настройками, который и определяет максимальное количество оборотов вентилятора в минуту.

Опять же если кликните по этому пункту и покажется список (в моём случае) из трёх пунктов. По умолчанию был выбрал — Optimal.

Если вкратце, то:

Optimal — это промежуточный режим между производительным и тихим;

Silent — это самый тихий режим;

Performance — это производительный режим,

Мы же останавливаем свой выбор на Silent. Затем нажимаем кнопку F10 и БИОС предложит нам сохранить изменения, соглашаемся и компьютер сам перезагрузится.

Уже при включении, вентиляторы вначале сильно «зажжужат», а затем снизят обороты для работы в тихом режиме. Если же шум по прежнему остается, то тут две причины:

  1. На материнской плате имеются два вида разъёмов под вентиляторы. Одни подписаны как «CHA_FAN» и «CPU_FAN», вторые просто «PWR_FAN». Так вот лишь первые являются управляемыми, второй же типа просто питающие;
  2. Подключены обычные вентиляторы (с двумя или тремя штырьками), такие вентиляторы не управляемые. Управляемые имеют разъем из 4 ножек.

Вывод.

Выполнив всю предложенную инструкцию мы получаем компьютер с тихим режимом работы. Теперь и Вы спокойны и коллеги не жалуются. Удачи!